NumPy的学习

NumPy的学习

在这里插入图片描述

1.NumPy这个库可用于数据分析,科学运算,数据处理。

NumPy中所有的计算都是围绕这数组进行的

将数据表示成数组的形式numpy.array()

2.NumPy支持的数组数值类型:

所有的数值类型都归于dtype(data-type)对象的实例,我们可以用

numpy.dtype(object,align,copy)来指定数值类型。在数组里面可以直接用dtype=参数

解释:

numpy.dtype(object, align, copy) 表示创建一个 NumPy 数据类型对象,其中 object 是数据类型的名称,align 是数据的对齐方式(默认为 C 风格的对齐方式),copy 是布尔值,表示是否复制数据(默认为 False)。
3.开始
import numpy as np   #导入NumPy模板叫做np
a = np.array([1.1, 2.2, 3.3],dtype=np.float64)  #指定1维数组的数值类型为float64
a,a.dtype  #查看a及a的dtype类型

运行结果:

(array([1.1, 2.2, 3.3]), dtype('float64'))

你可以使用 .astype() 的方法在不同的数值类型之间相互转换。

a.astype(int).dtype #将a的数值类型从float64 转换到 int,并查看dtype类型

运行结果:

dtype('int64')
4.NumPy数组的生成

在 Python 内建对象中,数组有三种形式:

  • 列表:[1, 2, 3]
  • 元组:(1, 2, 3, 4, 5)
  • 字典:{A:1, B:2}

NumPy 最核心且最重要的一个特性就是 ndarray 多维数组对象。

NumPy 中,ndarray 类具有六个参数,它们分别为:

  • shape:数组的形状。
  • dtype:数据类型。
  • buffer:对象暴露缓冲区接口。
  • offset:数组数据的偏移量。
  • strides:数据步长。
  • order{'C','F'},以行或列为主排列顺序。

下面,我们来了解创建 NumPy 多维数组的一些方法。在 NumPy 中,我们主要通过以下 5 种途径创建数组,它们分别是:

  • 从 Python 数组结构列表,元组等转换。
  • 使用 np.arangenp.onesnp.zeros 等 NumPy 原生方法。
  • 从存储空间读取数组。
  • 通过使用字符串或缓冲区从原始字节创建数组。
  • 使用特殊函数,如 random
列表或元组转换

在NumPy中,我们使用numpy.array将列表或ndarray数组。其方法为:

numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)

其中,参数:

  • object:列表、元组等。
  • dtype:数据类型。如果未给出,则类型为被保存对象所需的最小类型。
  • copy:布尔类型,默认 True,表示复制对象。
  • order:顺序。
  • subok:布尔类型,表示子类是否被传递。
  • ndmin:生成的数组应具有的最小维数。

下面,通过列表创建一个 ndarray’ 数组:

np.array([[1,2,3],[4,5,6]])

或者是列表和元组。

np.array([(1, 2), (3, 4), (5, 6)])
arange 方法创建:

除了直接使用 array 方法创建 ndarray,在 NumPy 中还有一些方法可以创建一些有规律性的多维数。首先,我们来看一看 arange()arange() 的功能是在给定区间内创建一系列均匀间隔的值。方法如下:

numpy.arange(start, stop, step, dtype=None)

你需要先设置值所在的区间 [开始, 停止),这是一个半开半闭区间。然后,在设置 step 步长用于设置值之间的间隔。最后的可选参数 dtype可以设置返回ndarray 的值类型。

np.arange(3, 7, 0.5, dtype=np.float32)
linspace 方法创建

linspace方法也可以像arange方法一样,创建数值有规律的数组。linspace 用于在指定的区间内返回间隔均匀的值。其方法如下:

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
  • start:序列的起始值。
  • stop:序列的结束值。
  • num:生成的样本数。默认值为50。
  • endpoint:布尔值,如果为真,则最后一个样本包含在序列内。
  • retstep:布尔值,如果为真,返回间距。
  • dtype:数组的类型。
np.linspace(0, 10, 10, endpoint=True)

结果为:

array([ 0.        ,  1.11111111,  2.22222222,  3.33333333,  4.44444444,
        5.55555556,  6.66666667,  7.77777778,  8.88888889, 10.        ])
ones 方法创建

numpy.ones 用于快速创建数值全部为 1 的多维数组。其方法如下:

numpy.ones(shape, dtype=None, order='C')

其中:

  • shape:用于指定数组形状,例如(1, 2)或 3。
  • dtype:数据类型。
  • order{'C','F'},按行或列方式储存数组。
import numpy as np
np.ones((2, 3))
array([[1., 1., 1.],
       [1., 1., 1.]])
zeros 方法创建

zeros 方法和上面的 ones 方法非常相似,不同的地方在于,这里全部填充为 0zeros 方法和 ones 是一致的。

numpy.zeros(shape, dtype=None, order='C')
eye 方法创建

numpy.eye 用于创建一个二维数组,其特点是k 对角线上的值为 1,其余值全部为0。方法如下:

numpy.eye(N, M=None, k=0, dtype=<type 'float'>)

其中:

  • N:输出数组的行数。
  • M:输出数组的列数。
  • k:对角线索引:0(默认)是指主对角线,正值是指上对角线,负值是指下对角线。
np.eye(5, 4, 3)

结果:

array([[0., 0., 0., 1.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])
从已知的数据创建

我们还可以从已知数据文件、函数中创建 ndarray。NumPy 提供了下面 5 个方法:

  • frombuffer(buffer):将缓冲区转换为 1 维数组。
  • fromfile(file,dtype,count,sep):从文本或二进制文件中构建多维数组。
  • fromfunction(function,shape):通过函数返回值来创建多维数组。
  • fromiter(iterable,dtype,count):从可迭代对象创建 1 维数组。
  • fromstring(string,dtype,count,sep):从字符串中创建 1 维数组。
np.fromfunction(lambda a, b: a + b, (5, 4))

结果为:

array([[0., 1., 2., 3.],
       [1., 2., 3., 4.],
       [2., 3., 4., 5.],
       [3., 4., 5., 6.],
       [4., 5., 6., 7.]])
ndarray 数组属性
首先,我们创建一个 ndarray 数组,首先,新建 a 并随意设定为一个 2 维数组。
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
a  # 查看 a 的值

结果为:

array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

ndarray.T 用于数组的转置,与 .transpose() 相同。

a.T

结果为:

array([[1, 4, 7],
       [2, 5, 8],
       [3, 6, 9]])

ndarray.dtype 用来输出数组包含元素的数据类型。

`ndarray.dtype` 用来输出数组包含元素的数据类型。
a.dtype

结果为:

dtype('int64')

ndarray.imag 用来输出数组包含元素的虚部。

import numpy as np
a=np.array([[1,2,3],[4,5,6],[7,8,9]])
a.imag

结果为虚数( z=a+bi) :

array([[0, 0, 0],
       [0, 0, 0],
       [0, 0, 0]])

ndarray.real 用来输出数组包含元素的实部。

a.real
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

ndarray.size 用来输出数组中的总包含元素数。

a.size

结果为:

9

ndarray.itemsize输出一个数组元素的字节数。例如,如果数组 a 的元素类型是整数(如 int32),那么 a.itemsize 的值将是4,因为一个 int32 类型的元素占用4个字节的内存空间。同样地,如果数组 a 的元素类型是浮点数(如 float64),那么 a.itemsize 的值将是8,因为一个 float64 类型的元素占用8个字节的内存空间。

a.itemsize

结果为:

8

ndarray.nbytes用来输出数组的元素总字节数。

import numpy as np
a=np.array([[1,2,3],[3,4,5],[6,7,8]])
a.nbytes

结果为:

72

ndarray.ndim用来输出数组维度。

a.ndim

结果为:

2

ndarray.shape用来输出数组形状。

a.shape

结果为:

(3, 3)

ndarray.strides用来遍历数组时,输出每个维度中步进的字节数组。

a.strides

结果为:

(24, 8)

8


`ndarray.nbytes`用来输出数组的元素总字节数。

import numpy as np
a=np.array([[1,2,3],[3,4,5],[6,7,8]])
a.nbytes


结果为:

72


`ndarray.ndim`用来输出数组维度。

a.ndim


结果为:

2


`ndarray.shape`用来输出数组形状。

a.shape

结果为:

(3, 3)

`ndarray.strides`用来遍历数组时,输出每个维度中步进的字节数组。

a.strides


结果为:

(24, 8)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是萌新程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值