自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(75)
  • 收藏
  • 关注

转载 【无标题】

能被一方探测手段感知的对手执行空中任务所需资源的固有属性信息,对于∀xei∈Xe一方执行空中任务所需资源组合向量,征候信息表现为机种数量组合,雷达反射面RCS和电磁辐射信号等,通过整合以上信息,同时结合我方重要目标部署,即可初步预测出对手作战意图。为了使研究问题简化,本文在兵棋推演空中任务预测研究中,只考虑侦获的机种组合信息。

2023-02-02 10:38:14 3

转载 舰载光电跟踪与火控系统发展

结构封闭的光电指向器典型代表有德国MSP500光电系统、“梅杜莎MK4”光电系统、以色列Toplite光电系统、FLIR公司的SeaFLIR 380-HD和SeaFLIR 280-HD系统及萨基姆公司的PASEO系统等。该系统集成了VIGY 105光电和VAMPIR MB光电的特点,主要功能包括全景监视、昼夜红外搜索、目标识别、三维目标自动跟踪、弹道计算、舰炮控制和火力打击等,主要用于提高水面舰艇的自我防御能力。光电跟踪仪对低空目标进行搜索、探测、跟踪,获取目标运动参数,并将参数传送给武器分系统;

2023-01-31 09:40:07 4

转载 面向大数据处理框架的JVM优化技术综述

本节简述大数据处理框架以及JVM相关概念, 包括大数据处理框架如何将大数据应用转化为可并行执行的计算任务, JVM执行任务代码的流程, 以及JVM的垃圾回收机制和相关的GC算法.

2023-01-28 09:43:30 6

转载 基于深度学习的复杂背景下目标检测

目标检测是计算机视觉领域的重要研究方向. 传统的目标检测方法在特征设计上花费了大量时间, 且手工设计的特征对于目标多样性的问题并没有好的鲁棒性, 深度学习技术逐渐成为近年来计算机视觉领域的突破口. 为此, 对现有的基础神经网络进行研究, 采用经典卷积神经网络VGGNet作为基础网络, 添加部分深层网络, 结合SSD (single shot multibox detector)算法构建网络框架. 针对模型训练中出现的正负样本不均衡问题, 根据困难样本挖掘原理, 在原有的损失函数中引入调制因子, 将背景部分视

2023-01-10 09:12:09 144

转载 基于深度学习的显著性目标检测方法综述

本文首先对深度监督学习下的显著性目标检测模型进行了综述,并从检测粒度的角度分类综述了这些方法间的联系及各自的优缺点.然后根据训练图像中标注信息来源的不同,详细阐述了弱监督学习下的网络模型.另外,本文介绍了七个主流数据集和三个主流评估基准,并从中选取了三个最为广泛使用的测试集和两个便于数据直观对比的评估指标,通过从原始文献中采集实验数据来进行模型间的对比分析.

2023-01-09 09:15:57 52

转载 有人/无人机协同作战模式及关键技术研究

随着军事技术不断进步, 无人机在军事作战方面得到越来越广泛的应用, 发挥着越来越重要的作用, 有人/无人机协同作战模式必将成为未来一种重要的作战方式。针对无人机在协同作战体系中的应用, 构建有人/无人机协同作战体系结构, 研究有人/无人机被动集中式、 半主动分布式和驻地分布式协同作战模式, 提出支撑未来有人/无人机协同作战的关键技术, 对提升协同作战能力具有重要的现实意义和理论意义。无人机;协同作战;作战模式;关键技术;作战能力。

2023-01-06 08:58:22 134

转载 盘点2022年全球军事科技热点

今年7月,英国成立国防人工智能研究中心,以支持国防部6月发布的《国防人工智能战略》,加速人工智能的军事应用。今年年底,美国宣布,将自主系统与无人机、弹药相结合的“天空博格人”和“金帐汗国”项目已成功完成多轮试验,将于2023年正式纳入采办序列。该技术以云计算、战场网络、人工智能等先进技术为关键支撑,将战场传感器、武器平台连接到同一网络,旨在推动数据实时共享,使军兵种之间以及美军与盟军之间,能够无缝通信,实现“从传感器到射手”的OODA杀伤链。来源:中国军网 作者:张一成 赵辉 国防大学。

2023-01-05 09:04:08 9

转载 无人机在蜂群作战中的应用与特点

美“小精灵”项目使用的是X-61A无人机,作战半径可达556~926km,载机为C-130、B-1B等大型平台,因此待投区的选择通常会相对较远。无人机蜂群作战阶段划分。

2022-12-30 08:46:35 16

转载 基于深度强化学习的海战场目标搜寻路径规划

杨克巍海战场是未来大国冲突的主阵地之一, 强大的海战场目标搜寻能力是执行海上训练和作战的最后一道屏障, 同时也因其复杂多变的环境和重要战略地位成为战场联合搜救中最艰难最核心的部分。面向海战场目标搜寻的存活时间短、实时性要求高等特点, 提出一种基于深度强化学习的海战场目标搜寻规划方法。首先, 构建了海战场目标搜寻场景数学规划模型, 并将其映射为一种强化学习模型;

2022-12-27 09:57:45 85

转载 对话推荐算法研究综述

推荐系统是一种通过理解用户的兴趣和偏好帮助用户过滤大量无效信息并获取感兴趣的信息或者物品的信息过滤系统. 目前主流的推荐系统主要基于离线的、历史的用户数据, 不断训练和优化线下模型, 继而为在线的用户推荐物品, 这类训练方式主要存在3个问题: 基于稀疏且具有噪声的历史数据估计用户偏好的不可靠估计、对影响用户行为的在线上下文环境因素的忽略和默认用户清楚自身偏好的不可靠假设.

2022-12-26 09:23:41 60

转载 乔红院士:农业机器人是战略必争的领域

“我国农业呈现人口多、耕地面积较多、作物种类多,但劳动力少、人均耕地少的特点,打通农业人工智能和机器人的接口,有望实现更好的自主、高效、精准和低成本的中国特色农业应用和发展。”在12月16日举行的“智慧农业创新院士论坛”上,中国科学院院士、中国科学院自动化研究所研究员乔红表示。

2022-12-23 09:27:43 4

转载 知识图谱可解释推理研究综述

PDFHTML阅读XML下载导出引用引用提醒知识图谱可解释推理研究综述DOI:10.13328/j.cnki.jos.006522作者:侯中妮 靳小龙 陈剑赟 官赛萍 王元卓 程学旗 作者简介:侯中妮(1996-),女,博士生,主要研究领域为知识图谱,事理图谱;靳小龙(1976-),男,博士,研究员,博士生导师,CCF高级会员,主要研究领域为大数据知识工程,知识图谱;陈剑赟(1977-),女,博士,主要研究领域为智能信息处理,系统工程;官赛萍(1991-),女,博士,助理研究员,主要研

2022-12-22 09:11:44 92

转载 浅析量子技术在军事领域的应用

量子技术是量子物理与信息技术相结合发展起来的新兴学科,涉及计算机、信息、导航、能源等多个应用领域。近年来,随着量子技术的快速发展,量子技术的应用已经成为各领域的研究重点,尤其是量子技术在军工领域的应用更是受到了世界各国的高度重视,成为世界大国的重点发展对象。量子技术被认为是有潜力改变战争行为和战争结果的新兴技术,推动了全球性的军事变革和战争形式变化。

2022-12-08 16:21:43 20

原创 大数据—人工智能领域高水平会议及热点技术汇总

七、IPython Notebook运行Python Spark程序 1.Anaconda。2.使用Spark ML Pipeline 机器学习流程分类程序设计。九、Python Spark决策树二分类与多分类。2.Python Spark贝叶斯模型程序设计。2.Python Spark SVM程序设计。2.Python Spark逻辑回归程序设计。十五、Python Spark 创建推荐引擎。十一、Python Spark 贝叶斯模型。八、Python Spark集成开发环境。

2022-11-10 10:20:12 873

转载 深度学习|基于MobileNet的多目标跟踪深度学习算法

帧频率提高为该算法的3倍, 检测跟踪时间提高显著. 本文算法虽然在跟踪准确度、ID变换次数和误报总数上不及YOLOv3-Deep-SORT算法, 但其他跟踪指标均优于该算法, 并且本文算法相比于TC_ODAL、RMOT和SORT等算法优势明显. 为进一步表现本文算法的优越性, 以ID标号为3的目标为例, 给出如图 4所示的部分跟踪结果, 且跟踪框上带有数字ID标识. 由图 4可见, 该算法在第200帧、260帧、320帧均能连续跟踪, 跟踪效果良好.单张图片检测时间相比YOLOv3模型提高了2倍;

2022-11-09 10:24:08 174

转载 知识图谱:技术成熟度飞速跃升,与产业互联结合更加紧密

通过知识图谱的应用,一方面打破了数据孤岛,将大规模、碎片化的多源政务数据关联起来,以实体为基本单位对政务数据进行挖掘,揭示各实体间的复杂关系,实现知识层面的数据融合与集成。在现有方法大多都是面向干净数据的前提下,带有噪音检测和基于噪音感知的实体融合方法探索出了一种鲁棒的实体对齐方式,鲁棒性的跨语言实体对齐模型,通过图神经网络建模知识图谱中的实体对,得到噪音感知的实体对齐模块,利用生成对抗网络来生成噪音实体对并训练一个噪音判别器,识别出干净的实体对。挖掘属性和评价词语,与相关实体关联,形成实体的评价印象;

2022-11-07 15:11:37 141

转载 深度学习|太空“带货”,在轨放“卫星”!细说“梦天”那些“黑科技”

源自:北京日报 作者:王鸿良2022年10月31日,长征五号B遥四运载火箭成功把“梦天”实验舱送入太空预定轨道。该实验舱在飞行了大约13个小时后,与我国“天宫”空间站的“天和”核心舱对接,形成新的组合体。至此,我国第一座由3个舱段组成的空间站“天宫”基本型建造完毕。我们邀请全国空间探测技术首席科学传播专家庞之浩为您作详细解读。“梦天” 实验舱在轨示意图我国重量最大的单个航天器“梦天”实验舱是我国迄今为止重量最大的单个航天器,升空时约为23.3 吨。它也是我国空间站T字构型组合体的最后一个部分。该舱段聚焦

2022-11-03 14:54:31 103 1

转载 数字孪生|全国10省今年出台30+元宇宙政策文件,释放何种信号?

比如,南京市江宁高新区在2022南京市元宇宙产业发展大会上发布的《江宁高新区关于加快发展元宇宙产业的若干政策》中就提出,对于满足一定营收和纳税金额的企业,给予3-5年的全额租金补贴,以及800元/平方米(最高不超过500万元)的一次性装修补贴。南都记者梳理发现,除了两个省级层面的专项行动计划,全国还出台了十余个市、区层面的元宇宙专项政策和征求意见稿,涉及厦门、上海、武汉、北京、广州、杭州、南京、沈阳、无锡和重庆。也有专家认为,这些政策文件都并非简单的技术方案,而是一种产业规划,强调产业生态构建和综合创新。

2022-10-31 10:24:30 319

转载 自然语言处理:人工智能连接主义复兴浪潮中的下一个突破口

AI行业应用是一片新的大陆,深度学习作为新大陆的基石,经历了一轮又一轮突破。过去十年,在计算机视觉、语音识别、棋类AI等计算和感知智能技术上,深度学习率先取得成功。而最近深度学习在认知智能/自然语言处理上的进展,特别是Transformer衍生模型加上两阶段预训练语言模型范式的成功,正在将自然语言处理变成人工智能下一个最有可能的突破口。 计算机视觉与语音的成功是破茧成蝶而非横空出世 从2010年到2017年,从LeNet到AlexNet到Inception到VGGNet到ResNet及其衍生结构

2022-10-27 10:52:21 166

原创 大数据丨独家内部教材,让你掌握前沿技术算法

大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用大数据安全等)。

2022-10-24 09:52:33 701

原创 知识图谱丨知识图谱赋能企业数字化转型

作为图数据平台的领导者,Neo4j的企业愿景就是在不同的行业场景,帮助客户深入分析高度关联的复杂数据,使业务数据变为商业智能,提高数据的应用价值,赋能企业智能决策和数字化转型。随着关联数据、人工智能以及数据分析日益发展,知识图谱技术的应用不断增加,成为各个行业业务的主流需求。Neo4j知识图谱寻找隐藏在复杂关联事件中的模式,在更短的间隔内以可扩展的方式从具有复杂上下文情景的大量数据中获取有价值的信息,用户可以对基础数据进行推理并自信地使用其进行复杂的决策。相互关联是大数据时代的鲜明特征。

2022-10-22 09:42:28 275

原创 深度学习——如何用LSTM进行文本分类

6.掌握基于Hadoop大数据平台的数据挖掘和数据仓库分布式系统平台应用,以及商业和开源的数据分析产品加上Hadoop平台形成大数据分析平台的应用剖析。八、Python Spark集成开发环境 :1.Python Spark集成开发环境部署配置;九、Python Spark决策树二分类与多分类 :1.决策树原理;十三、Python Spark回归分析 :1.大数据分析;六、Spark :1.Spark生态与运行架构;5.掌握主流的基于大数据Hadoop和Spark、R的大数据分析平台架构和实际应用。

2022-10-21 09:45:43 496 1

原创 大数据——决策树(decision tree)

预先剪枝是在树的生长过程中设定一个指标,当达到该指标时就停止生长,这样做容易产生“视界局限”,就是一旦停止分支,使得节点N成为叶节点,就断绝了其后继节点进行“好”的分支操作的任何可能性。用决策树分类:从根节点开始,对实例的某一特征进行测试,根据测试结果将实例分配到其子节点,此时每个子节点对应着该特征的一个取值,如此递归的对实例进行测试并分配,直到到达叶节点,最后将实例分到叶节点的类中。九、Python Spark决策树二分类与多分类 :1.决策树原理;六、Spark :1.Spark生态与运行架构;

2022-10-20 09:59:31 507

转载 深度学习|transformers的近期工作成果综述

作者提出了一种基于自监督的视觉表示模型,即来自图像transformer的双向编码器表示(BEiT),它遵循了为自然语言处理领域开发的BERT [Kenton 2019]方法。ViT特征包含低层信息,对对抗攻击提供了优越的鲁棒性,并指出与增加尺寸或增加层数的纯transformer模型相比,cnn和transformer的组合具有更好的鲁棒性。Liu等人[Liu 2021]讨论了transformer从语言领域到视觉领域的适应问题,方法包括大量视觉实体的差异和与文本中的文字相比的图像的高分辨率像素差异。

2022-10-19 10:05:48 71 1

转载 知识图谱|知识图谱的典型应用

比如原来很多的在线客服,正在部分的被智能问答系统取代,早些年银行、电信等行业的在线客服,不同业务按不同的数字,在进入细分业务,继续选不同的数字,一直要选很多次,有了智能问答,会简化这些繁琐的过程,直接根据用户的问话,给出答案。还有一些聊天机器人,提供情景对话,就像一个人一样,和用户进行聊天。同为智能问答,特点不同,依赖的知识图谱技术也不同,聊天机器人,不仅提供情景对话,也能够提供各行各业的知识,它依赖的知识图谱是开放领域的知识图谱,提供的知识非常宽泛,能够为用户提供日常知识,也能进行聊天式的对话。

2022-10-18 09:19:01 315

转载 基于深度学习的地震波逆时偏移补偿方法

基于深度学习的地震波逆时偏移补偿方法韩连福,柴子威,宋利伟,刘兴斌,付长凤(1•东北石油大学物理与电子工程学院,黑龙江 大庆163318;2•中国石油大庆油田有限责任公司人才开发院,黑龙江 大庆163318)摘要:逆时偏移作为重要的地震偏移技术,已经成为复杂构造成像的有力工具。地下构造的强衰减体引起地震波 振幅减弱和相位失真,直接影响地下有效油气储层的识别精度,而现有逆时偏移补偿技术具有计算复杂、补偿精度低等不足。为优化计算、提高补偿精度,提岀一种基于TensorFlow框架的震波逆时偏移补偿方法,将传统循

2022-10-15 10:13:06 69

转载 知识图谱——技术与行业应用

这种搜索方式跟传统的搜索引擎是不一样的,一个传统的搜索引擎它返回的是网页、而不是最终的答案,所以就多了一层用户自己筛选并过滤信息的过程。在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。其次,RDF以三元组的方式来存储数据而且不包含属性信息,但图数据库一般以属性图为基本的表示形式,所以实体和关系可以包含属性,这就意味着更容易表达现实的业务场景。” 比如有一个负面消息是关于公司1的高管,而且我们知道公司1和公司2有种很密切的合作关系,公司2有个主营产品是由公司3提供的原料基础上做出来的。

2022-10-14 10:20:50 49

转载 深度学习|会开发AI的AI:超网络有望让深度学习大众化

超网络(hypernetwork)可以加快训练AI的过程。编者按:在执行特定类型任务,如图像识别、语音识别等方面,AI已经可以与人类相媲美了,甚至有时候已经超越了人类。但这些AI事先必须经过训练,而训练是个既耗时又耗计算能力的过程,有上百万甚至几十亿的参数需要优化。但最近研究人员做出了能瞬时预测参数的超网络。通过利用超网络(hypernetwork),研究人员现在可以先下手为强,提前对人工神经网络进行调优,从而节省部分训练时间和费用。文章来自编译。译者:boxi。划重点:人工智能是一场数字游戏,训练耗时耗力

2022-10-13 09:26:43 175

转载 深度学习与图神经网络学习分享:CNN经典网络之-ResNet

我记住吧,这种情况要小心,这就是梯度消失了,学习不到任何规律,记住就是恒等映射,2. 在网络上堆叠这样的结构,就算梯度消失,我什么也学不到,我至少把原来的样子恒等映射了过去,相当于在浅层网络上堆叠了“复制层”,这样至少不会比浅层网络差。我们不止是摸一摸,而且在摸过之后还要把杯子拿起来仔细看看,有什么细节可以帮助我们更好的识别,这就是在神经经过运转后,又把x整体输入,我们看到所有的网络都分成5部分,分别是:conv1,conv2_x,conv3_x,conv4_x,conv5_x。

2022-10-12 09:46:12 137

转载 一种产生DSN放大攻击的深度学习技术

NLP 数据是离散的,而图像更连续,因此需要非常专门的算法来保留被扰动的文本的语法结构,而对于图像,像素可以沿着色谱连续扰动。Citadel 的研究人员最近开发了一种深度神经网络(DNNs),可以检测一种称为分布式拒绝服务(DDoS)DNS 放大的网络攻击,然后使用两种不同的算法生成可以欺骗 DNN 的对抗性示例。Citadel 的研究人员最近开发了一种深度神经网络(DNNs),可以检测一种称为分布式拒绝服务(DDoS)DNS 放大的网络攻击,然后使用两种不同的算法生成可以欺骗 DNN 的对抗性示例。

2022-10-11 09:27:09 13

原创 深度学习在人工智能领域的前世今生

打个比方,当我们非常近距离地观察一张人脸图片时,这时候我们的大脑中只有一部分神经元是被激活的,我们也只能看到人脸上的像素级别点,当我们把距离一点点拉开,大脑其他部分的神经元将会被激活,我们也就可以观察到人脸的线条→图案→局部→整个人脸,这就是一步步获得高层特征的过程。其实,深度学习并非新事物,它是传统神经网络(Neural Network)的发展,两者采用了相似的分层结构,不同之处在于深度学习采用了不同的训练机制,具备强大的表达能力。相比传统的神经网络,通过逐层训练的方法降低了训练难度,如信号衰减的问题。

2022-10-08 09:25:49 81

原创 知识图谱构建与应用推荐学习分享

Bauer等人:提出了多跳双向注意力和指针生成器(pointer-generator)解码器,用于有效的多跳推理和连贯的答案生成,利用来自ConceptNet的relational path selection和selectively-gated注意力注入的外部常识知识。KPRN:虽然其他工作考虑了知识图谱的关系路径和结构,但KPRN将用户和项目之间的交互视为知识图谱中的实体关系路径,并使用LSTM对路径进行偏好推断以捕获顺序依赖关系。基于知识图谱的问答(KG-QA)用知识图谱中的事实回答自然语言问题。

2022-10-07 09:23:14 276

原创 AI如何走向精智能之路?

因此,在这项新研究中,由计算机视觉和人机交互交叉领域学者Ranjay Krishna领导的Stanford University(斯坦福大学)的研究人员训练了一个机器学习系统,不仅能发现该系统知识的空白,还能通过询问陌生人,如:“水槽是什么形状的?在这基础上,随着时间的推移,人工智能就能进一步学习语言和社会规范方面的知识,让自己变得越来越聪明,并提升它提出易于回答且更有意义的问题的能力。Jaques认为,主要的创新是奖励让人类做出反应的系统,“从技术角度来说,这并不疯狂,但从研究方向的角度来说非常重要。

2022-09-24 10:13:28 538

原创 深度学习与图神经网络学习分享:Transformer 整体结构

医疗领域:如流行疾病、肿瘤等相关疾病检测遥感领域:如遥感影像中的场景识别石油勘探:如石油油粒大小检测轨道交通:如地铁密集人流检测检测领域:如故障检测公安领域:如犯罪行为分析国防领域:目标检测、信号分析、态势感知…经济领域:如股票预测。

2022-09-22 10:07:42 132

转载 大数据下数模联动的随机退化设备剩余寿命预测技术(部分)

源自:自动化学报 作者:李天梅 司小胜 刘翔 裴洪摘要面向大数据背景下随机退化设备剩余寿命(Remaining useful life, RUL)预测的现实需求, 结合随机退化设备监测大数据特点及剩余寿命预测不确定性量化这一核心问题, 深入分析了机理模型与数据混合驱动的剩余寿命预测技术、基于机器学习的剩余寿命预测技术、统计数据驱动的剩余寿命预测技术以及机器学习和统计数据驱动相结合的剩余寿命预测技术的基本研究思想和发展动态, 剖析了当前研究存在的局限性和共性难题. 针对存在的局限性和共性难题, 以多源传感

2022-09-21 09:24:21 474

原创 知识图谱进阶UP!UP!

目前知识图谱产品的客户行业,分类主要集中在:社交网络、人力资源与招聘、金融、保险、零售、广告、物流、通信、IT、制造业、传媒、医疗、电子商务和物流等领域。知识图谱用节点和关系所组成的图谱,为真实世界的各个场景直观地建模,运用“图”这种基础性、通用性的“语言”,“高保真”地表达这个多姿多彩世界的各种关系,并且非常直观、自然、直接和高效,不需要中间过程的转换和处理——这种中间过程的转换和处理,往往把问题复杂化,或者遗漏掉很多有价值的信息。a.关系数据库查询:SQL语言 b数据库查询:SPARQL语言。

2022-09-20 09:53:19 420

转载 一图读懂加快制造业数字化、网络化、智能化发展

源自:信息技术发展司、工信微报。

2022-09-19 10:38:08 27

转载 图解:卷积神经网络数学原理解析

源自:数学中国过去我们已经知道被称为紧密连接的神经网络。这些网络的神经元被分成若干组,形成连续的层。每一个这样的神经元都与相邻层的每一个神经元相连。下图显示了这种体系结构的一个示例。正在上传…重新上传取消图1. 密集连接的神经网络结构当我们根据一组有限的人工设计的特征来解决分类问题时,这种方法很有效。例如,我们根据足球运动员在比赛期间的统计数据来预测他的位置。然而,当处理照片时,情况变得更加复杂。当然,我们可以将每个像素的像素值作为单独的特征,并将其作为输入传递给我们的密集网络。不幸的是,为了让该网络适用于

2022-09-16 10:13:28 50

原创 深度学习与图神经网络研修

2、能够把握深度学习的技术发展趋势,可以熟练掌握深度学习核心技术、实践技巧,同时针对工作中存在的疑难问题进行分析讲解和专题讨论,有效的提升学员解决复杂问题的能力;1、采用深入浅出的方法,结合实例并配以大量代码练习,重点讲解深度学习框架模型、科学算法、训练过程技巧。典型的图像数据,像素点之间具有空间相关性,例如图像的分类、分割、检测都是CNN算法。2.图像数据,在实际应用过程中的处理方法,怎样做数据的预处理、进行数据增强等。针对具体的场景设计特定的神经网络模型,对典型数据适配的网络结构进介绍。

2022-09-15 09:41:42 30

转载 流体力学深度学习建模技术研究进展

首先,对深度学习技术所涉及的基本理论做了介绍,阐释流场建模中常用深度学习方法背后的数学原理。以深度学习技术为代表的人工智能技术本身仍处于发展阶段,过去几年在各行各业取得了令人瞩目的成就,这显示出深度学习技术的强大潜力。流体力学深度学习技术方兴未艾呈现出百花齐放的良好局面,但目前正处于起步和探索阶段,与工业界对该技术的能力期望有较大差距,这需要科研工作者的共同努力。以深度学习技术为代表的人工智能技术本身仍处于发展阶段,过去几年在各行各业取得了令人瞩目的成就,这显示出深度学习技术的强大潜力。

2022-09-12 10:03:10 61

大数据概述上课课件信息(马上删)

大数据概述上课课件信息(马上删)

2022-10-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除