每个人都是画家--论图像风格转换中的深度学习项目

本文探讨了图像风格转换的两种主要技术:基于特征提取的‘特征派’和使用生成对抗网络(GAN)的‘GAN派’。通过深度学习模型,如VGG19、neural-style、deep-photo-styletransfer、pix2pix和CycleGAN,实现了从内容图片到不同风格的艺术转换。文章以实际应用为例,展示了如何利用CycleGAN进行素颜到化妆风格的转换,并指出这种技术为现代艺术创作提供了新的可能。
摘要由CSDN通过智能技术生成

1.引言

 

图像风格转换指的是将一张参考图片的风格应用到另一张原始图片上,生成的新图片能既保留原始图片的内容,又可展现出参考图片的风格。图像风格转换兼具技术性、趣味性和实用性,一直以来是工业界和学术界的研究热点。

 

2016年,一款来自俄罗斯的照片美化应用Prisma ,曾风靡大江南北。Prisma借助人工智能技术将自身的能力提升到另一个层次,通过学习模仿各种著名绘画大师和主要流派的艺术风格,可以瞬间将普通照片变成让人惊叹的高逼格艺术画。今天下载安装尝试后,仍然觉得其魅力无穷,相当值得推荐。

原始图片

选择转化风格后最终效果 

从技术上讲,图像转换领域主要有两种实现思路:一种是依靠深度学习技术,先分别进行特征提取然后进行特征综合,最后完成图像生成,我们称之为“特征派”。另一种是以GAN为代表的图像风格转换,通过生成器与鉴别器之间的“互搏”,最终生成新的图像,我们称之为“GAN派”。下面就喝杯咖啡细细谈谈这两个门派吧。

 

2. “特征派”

 

“特征派”在工作时ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值