数据结构之二叉树1(前序中序后序层序遍历,重建二叉树)

本文详细介绍了二叉树的前序、中序、后序遍历的递归和非递归解法,以及层序遍历。还讨论了如何根据中序和前序或后序序列重建二叉树的方法。
摘要由CSDN通过智能技术生成

1 二叉树前序后序中序遍历 递归非递归解法

2  二叉树层序遍历;二叉树zigzag层序遍历

3 从中序和前序重建二叉树;从中序和后序重建二叉树



1 二叉树前序后序中序遍历

- 二叉树前序遍历,前序遍历方法是先访问根节点,然后再访问左右节点。

前序遍历的递归和非递归解法:

 //前序递归遍历
void preOrderRec(TreeNode *root)
{
     if(root == NULL) return;
     visit(root);
     preOrder(root->left);
     preOrder(root->right);
}

 //前序非递归遍历
void preOrder(TreeNode *root)
{
    stack<TreeNode *> s;

    while ((NULL != root) || !s.empty())
    {
        if (NULL != root)
        {
            visit(root);
            s.push(root);
            root = root->left;
        }
        else
        {
            root = s.top();
            s.pop();
            root = root->right;
        }
    }
}

- 二叉树中序遍历

中序遍历是先访问左子树,然后访问根节点,最后访问右子树

//递归中序遍历
void inorderTraversal(TreeNode *root)
{
     if(root == NULL) return;
     
    inorderTraversal(root->left);
     visit(root);
    inorderTraversal(root->right);
}

//非递归中序遍历   
 vector<int> inorderTraversal(TreeNode *root) {
        vector<int> result;
        vector<TreeNode*> Stack;
        if(root == NULL)
            return result;
        TreeNode * current = root;

        while(current != NULL || !Stack.empty())
        {
            if(current != NULL){
                //左子树压入栈内
                Stack.push_back(current);
                current = current->left;
            }
            else
            {          
                current = Stack.back();
                Stack.pop_back();
                result.push_back(current->val);
                current = current->right;
            }           
        }
        return result;   
    }

- 二叉树后序遍历

按照左-右-中的顺序访问,第一次遇到右节点的时候先入栈,并不访问,等到后序先把对应的左节点访问之后,才能轮到右节点,所以使用flag进行标记。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值