学学没完
码龄6年
关注
提问 私信
  • 博客:152,796
    152,796
    总访问量
  • 42
    原创
  • 1,595,979
    排名
  • 86
    粉丝
  • 0
    铁粉

个人简介:分享一些自己的学习总结,也分享一些优秀的博客链接,欢迎交流学习!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2018-08-07
博客简介:

weixin_42907473的博客

查看详细资料
个人成就
  • 获得179次点赞
  • 内容获得114次评论
  • 获得1,029次收藏
  • 代码片获得397次分享
创作历程
  • 21篇
    2020年
  • 27篇
    2019年
成就勋章
TA的专栏
  • 目标跟踪
    10篇
  • 刷题
    3篇
  • 其他
    2篇
  • video recognition
    2篇
  • 深度学习
    4篇
  • opencv
  • C++学习笔记
    8篇
  • linux
    5篇
  • C++11
    2篇
  • 比赛经历
    2篇
  • python
    4篇
  • pytorch
    2篇
  • 目标检测
    4篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CV领域常用的注意力机制模块(SE、CBAM)

CV领域常用的注意力机制模块(SE、SAM、CAM、CBAM)一、SE模块(Squeeze-and-Excitation)更详细内容推荐博客:最后一届ImageNet冠军模型:SENetSENet网络的创新点:在于关注channel之间的关系,希望模型可以自动学习到不同channel特征的重要程度。1、SE结构能说一说么?一个SEblock的过程分为 Squeeze(压缩) 和 Excitation(激发) 两个步骤:Squeeze(压缩) 通过在Feature Map层上执行Global
原创
发布博客 2020.06.03 ·
47978 阅读 ·
78 点赞 ·
26 评论 ·
655 收藏

JDE 《Towards Real-Time Multi-Object Tracking》学习笔记

论文链接:https://arxiv.org/pdf/1909.12605.pdf代码链接:https://github.com/Zhongdao/Towards-Realtime-MOT翻译链接:https://blog.csdn.net/weixin_42907473/article/details/104407606  该方法是基于YOLOv3和MOTDT做的。它网络前面都和YOLOv...
原创
发布博客 2020.03.14 ·
2616 阅读 ·
2 点赞 ·
1 评论 ·
30 收藏

2019年“创青春.交子杯”新网银行高校金融科技挑战赛-AI算法赛道比赛总结

比赛已经结束,很荣幸能和队友一起拿到这个冠军奖杯,非常感谢队友的付出,写个总结,算是对这几个月付出的一个交代。一、简述比赛原因及队伍组成:这个比赛是我一个队友给我推荐的,当时也是看着感觉题目很有意思,所以就和他一起参加了。另一个队友,则是之前其他比赛认识的,最终组成了我们这个跨校三人小队。队名由来:我们的队伍名字是“学学没完”,这其实是我的账户名,前期是我一个人在做这个比赛因此这样取名,后来...
原创
发布博客 2019.12.10 ·
5536 阅读 ·
13 点赞 ·
47 评论 ·
33 收藏

视频动作分类网络《TSM: Temporal Shift Module for Efficient Video Understanding》学习笔记

全文按照原文的结构来描述(你可以当做是翻译,但不是谷歌翻译,是加入理解的翻译),尽可能保持作者原文想表达的意思,里面会穿插自己的想法(会注明)。Abstract问题:视频流的爆炸增长带来了对高准确度和低成本计算的视频理解挑战。常规的2D CNN 在计算上是相对廉价的,但其无法捕获时间维度的关系。而基于3D CNN 的方法可以达到良好的效果性能,但计算量大,因此部署成本很大。解决方案:结...
原创
发布博客 2019.11.12 ·
13318 阅读 ·
24 点赞 ·
15 评论 ·
85 收藏

ubuntu16.04 检测不到扩展屏幕(解决方案)

搜到这个问题的你,相信也被这个问题困扰、浪费了很多时间说一下,我遇到的情况:xrandr 检测不到扩展屏,从nvidia官网下载了各种版本的驱动,装上都没用。经过几天的倒腾,直接说结论:如果要分屏就不要用nvidia官方提供的驱动(F**k nvidia !!!),直接用ubuntu系统设置-》软件与更新-》附加驱动里选一个第三方的驱动。这里可能会遇到没有驱动或者显示的驱动过老的情况,添加...
原创
发布博客 2019.11.05 ·
15494 阅读 ·
5 点赞 ·
11 评论 ·
24 收藏

C++ 对容器的下标访问、C++11新特性访问以及迭代器访问速度对比

结论:下标访问最快,其次到C++11新特性方式,最慢的是迭代器访问贴代码:`#include #include <time.h>#include using namespace std;int main(){vector pri(10000,1);time_t begin,end;double ret=0;begin = clock();for(auto iter...
原创
发布博客 2019.07.01 ·
1307 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python 读写文件方法

方法一、用open()的方法(open()返回一个文件对象,它是可迭代的)f = open('test.txt',’r‘) r表示文本文件,rb是二进制文件,默认r若文件不存在,则该函数会抛出一个IOError的错误,如下:>>> f = open('test.txt','r') Traceback (most recent call last): File "<stdin>", line 1, in <module>FileNotFoundEr
原创
发布博客 2020.11.05 ·
576 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

手撕代码必会排序算法(冒泡、快排、堆排)

一、冒泡排序1、基础版def bubble_Sort(arr): n = len(arr) for i in range(n-1): for j in range(n-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j]2、改进版加入Flag,若剩余的都已经是有序的则无需继续def super_bubble_Sort(arr):
原创
发布博客 2020.09.23 ·
577 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

二叉树的前中后序、层序遍历以及重建

一、Tree的结构class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None二、前序遍历根->左->右,前中后都是指的是根,左右的关系永远是先左后右1、递归方法这个是通用写法,对于中序和后序,仅需稍微调整一下(详情看后面)def preord_Recur(root): res = [] def he
原创
发布博客 2020.09.23 ·
459 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

视觉岗高频基础代码题

1、NMS基础中的基础,直接放代码(有注释)import numpy as npdef NMS(dets, nms_th): #检测结果解析 x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[: 4] #获得置信度从大到小的索引信息 order = scores.argsort()[::-1] #计算所有候选框的面积
原创
发布博客 2020.09.23 ·
267 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

智力题:1000瓶水和老鼠

1000瓶水和老鼠题目:现在有1000瓶水,里面有一瓶有毒,且老鼠喝了后24小时才毒发身亡,问若要求24小时内判断出哪瓶水有毒,最少需要多少只老鼠?答:这其实是一道编码问题,2^9 <1000<2^10,所以需要10只老鼠。这里举8瓶水里找毒药的例子, 8=2^3,所以需要三只老鼠;老鼠就代表了每个二进制位,1代表死亡,2代表没死000代表第0瓶水有毒(没有老鼠死亡)001代表第1瓶水有毒(代表只有一号老鼠喝了第1瓶水,且死亡)010代表第2瓶水有毒(代表只有二号老鼠喝了第2瓶水,且
原创
发布博客 2020.07.10 ·
1132 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2020中兴捧月算法大赛-阿尔法(MOT)赛道--赛后总结

比赛结束了,很荣幸拿到了中兴捧月算法大赛 MOT赛道 全国总决赛第二名的亚军奖杯,这估计也是我找到工作前最后一个比赛了,收获满满,下面算是自己给自己写的一个简单的赛后总结,做的比较粗糙,细节也就不多赘述,当然也欢迎交流。一、初赛初赛截榜前一周,我才开始做这个比赛,参赛模型是今年的SOTA模型FairMOT,主要针对跟踪部分做了一些针对性改进,当时也没想着能进复赛,只是想着拿个面笔试资格,哈哈,但是没想到进了复赛。初赛排名:Rank28。二、复赛复赛不是技术赛,而是面试,大概问了以下问题:先是问了关
原创
发布博客 2020.06.24 ·
1665 阅读 ·
1 点赞 ·
7 评论 ·
8 收藏

MOT paper translation (MOT论文的译文或学习笔记,持续更新...)

pdf地址:https://github.com/TimeChi/MOT-paper-translation该仓库保存了目前的文章有:MOTDT:《REAL-TIME MULTIPLE PEOPLE TRACKING WITH DEEPLY LEARNED CANDIDATE SELECTION AND PERSON RE-IDENTIFICATION》DAN:《Deep Affinity Network for Multiple Object Tracking》JDE:《Towards Real
原创
发布博客 2020.05.12 ·
569 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

MOT相关博客记录(持续更新...)

本文旨在收录一些写的不错的MOT相关博客多目标跟踪MOT16数据集和评价指标
原创
发布博客 2020.04.28 ·
317 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

模型大小、推理速度相关

模型参数量(Params)和模型每秒浮点运算速度(Flops)对卷积层而言Params量计算公式:(Kh∗Kw∗Cin)∗Cout(K_h*K_w*C_in )*C_out(Kh​∗Kw​∗Ci​n)∗Co​utFlops计算公式:(Kh∗Kw∗Cin∗Cout)∗(Hout∗Wout)(K_h*K_w*C_in*C_out )*(H_out*W_out)(Kh​∗Kw​∗Ci​n∗Co​u...
原创
发布博客 2020.04.24 ·
1479 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

C++ 声明N*M的数组

一、静态申明N*M的数组int n = 5;int m = 5;int a[n][m];//内存连续二、动态声明N*M的数组与静态不同,动态申明的数组程序不会自己释放内存,必须手动释放,且内存未必连续(任意的p[k]都是一个int* 类型,即一个地址,所以只能p[i][j]或者 * (* (p+i) + j)来访问数组的元素,而不能a[i * n + j]使用。)1.1、动态申明一个...
原创
发布博客 2020.04.11 ·
1962 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

炼丹Tricks相关博文收录(持续更新...)

如何理解深度学习分布式训练中的large batch size与learning rate的关系?
原创
发布博客 2020.04.01 ·
224 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Tracktor:《Tracking without bells and whistles》

.本文核心思想:  本文提出的Tracktor仅通过一个目标检测器即可完成MOT任务。对于给定的帧t包含两个主要的处理步骤,如上图,用蓝色和红色表示。  首先(蓝色部分,对应轨迹bbox回归更新),将t-1帧已有的轨迹边界框作为第t帧该轨迹的起始边界框,进行回归对齐即可得到当前帧对应轨迹的bbox(这里的理论支持前提是高帧率视频下,前一帧和后一帧位置变化不大)。然后,将新bbox的位置相...
原创
发布博客 2020.03.21 ·
2621 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

常见激活函数回顾总结

激活函数分类示意图**“饱和激活函数”**的存在的问题:1) 在接近饱和区时,变化太缓慢,导数趋于0,容易出现梯度消失。2) 反向传播求解误差梯度时,梯度趋于0,收敛速度慢。 **“非饱和激活函数”**的优势:1) 没有饱和区,抑制了“梯度消失”问题。(梯度消失问题的原因是多方面的,不仅仅是激活函数的锅)2) 收敛速度快3) ReLU会使一部分神经元输出为0,使网络更加稀...
原创
发布博客 2020.03.14 ·
351 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

多目标跟踪 MOTDT 学习笔记

论文地址:https://arxiv.org/pdf/1809.04427.pdf代码地址:https://github.com/longcw/MOTDT图片来源  本文整体框架和DeepSort很相似,不同之处在于扩大了关联候选者的范围,使卡尔曼滤波预测结果也作为候选者,为了统一度量检测框和预测框的置信度,前者采用了R-FCN结构,后者设计了轨迹置信度函数,分别得到检测框和预测框的置...
原创
发布博客 2020.03.12 ·
1316 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏
加载更多