数学
可爱多多白
这个作者很懒,什么都没留下…
展开
-
离散随机变量的常用分布
离散型随机变量的常用分布[ + ] 两点分布1 若事件A发生 0 若事件A不发生记做 r,v X ~ B(1,p)[ - ] 二项分布n次伯努利实验的成功次数X,每次伯努利实验成功概率p q = 1 - p 记做 r,vX\~B(n,p)r,v X \~{} B(n,p)1=(p+q)n=∑k=0nCknpkqn−k 1 = (p+q)^{n} = \sum_{k=0}^nC_{n}^{k}原创 2020-02-20 16:28:06 · 1069 阅读 · 0 评论 -
连续性随机变量的常用分布
连续性分布[ + ] 均匀分布 记做 r,vX∼U(a,b)r,v X\sim U(a,b) 概率密度为:f(x)=⎧⎩⎨1b−a0,a≤x≤b,其他f(x) = \left \{\begin{aligned}\frac{1}{b-a}&,a\leq x \leq b \\0&,其他\end{aligned}\right.分布函数为: F(x)=⎧⎩⎨⎪⎪⎪⎪⎪⎪0,x−ab−a,原创 2020-02-20 16:24:27 · 1429 阅读 · 0 评论 -
边缘分布和随机变量独立性
离散型随机变量的边缘分布设二维离散型随机变量(X,Y)(X,Y)的分布律为: P(X=xi,Y=yj)=pij,i,j=1,2...P(X=xi)=∑j=1+∞pij,i=1,2...P(X=x_i,Y=y_j) = p_{ij},\quad i,j=1,2...\\P(X=x_i) = \sum_{j=1}^{+\infty}p_{ij},\quad i=1,2... 称为二维离散型随机变量原创 2020-02-20 16:30:03 · 2353 阅读 · 0 评论