九宫幻方
小明最近在教邻居家的小朋友小学奥数,而最近正好讲述到了三阶幻方这个部分,
三阶幻方指的是将1~9不重复的填入一个3*3的矩阵当中,使得每一行、每一列和每一条对角线的和都是相同的。
三阶幻方又被称作九宫格,在小学奥数里有一句非常有名的口诀:
“二四为肩,六八为足,左三右七,戴九履一,五居其中”,
通过这样的一句口诀就能够非常完美的构造出一个九宫格来。
4 9 2
3 5 7
8 1 6
有意思的是,所有的三阶幻方,都可以通过这样一个九宫格进行若干镜像和旋转操作之后得到。
现在小明准备将一个三阶幻方(不一定是上图中的那个)中的一些数抹掉,交给邻居家的小朋友来进行还原,
并且希望她能够判断出究竟是不是只有一个解。
而你呢,也被小明交付了同样的任务,但是不同的是,你需要写一个程序~
输入格式:
输入仅包含单组测试数据。
每组测试数据为一个3*3的矩阵,其中为0的部分表示被小明抹去的部分。
对于100%的数据,满足给出的矩阵至少能还原出一组可行的三阶幻方。
输出格式:
如果仅能还原出一组可行的三阶幻方,则将其输出,否则输出“Too Many”(不包含引号)。
样例输入
0 7 2
0 5 0
0 3 0
样例输出
6 7 2
1 5 9
8 3 4
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
笨笨有话说:
我最喜欢这类题目了。既然九宫幻方一共也没有多少,我就不辞辛劳地一个一个写出来好了。
也不能太过分,好歹用个数组。
总结
关键点:不管横向纵向相加和都为 15
全排列找出满足关键点的所有组合(不会很多),最后遍历判断符合输入组合的组合有多少个,一个则打印输出,多个则输出“Too Many”
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int arr[9];
int str[9] = {1,2,3,4,5,6,7,8,9};
bool isaaa = true;
int ans = 0;
bool istrue(int a[])
{
int a1 = a[0] + a[1] + a[2];
int a2 = a[3] + a[4] + a[5];
int a3 = a[6] + a[7] + a[8];
int a4 = a[0] + a[3] + a[6];
int a5 = a[1] + a[4] + a[7];
int a6 = a[2] + a[5] + a[8];
int a7 = a[2] + a[4] + a[6];
int a8 = a[0] + a[4] + a[8];
if(a1==a2 && a2==a3 && a3==a4 && a4==a5 && a5==a6 && a6==a7 && a7==a8)
return true;
return false;
}
void print(int str[])
{
int k = 0;
for(int i = 0; i < 3; i++)
{
for(int j = 0; j < 3; j++)
{
cout << str[k]<< " ";
k++;
}
cout << endl;
}
}
int main(int argc, char** argv) {
for(int i = 0; i < 9; i++)
cin >> arr[i];
do{
if(istrue(str))
{
isaaa = true;
for(int i = 0; i < 9; i++)
{
if(arr[i] != 0 && arr[i] != str[i])
{
isaaa = false;
}
}
if(isaaa)
{
for(int i = 0; i < 9; i++)
arr[i] = str[i];
ans++;
}
}
}while(next_permutation(str,str+9));
if(ans == 1)
print(arr);
else if(ans > 1)
cout << "Too Many" << endl;
return 0;
}