给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
nums 为无重复元素的升序排列数组
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
示例 4:
输入: nums = [1,3,5,6], target = 0
输出: 0
示例 5:
输入: nums = [1], target = 0
输出: 0
思路
根据题目内容可以知道两个前提,数组有序并且数组不存在重复元素。因此我们可以考虑使用二分查找法.
同时分析题目我们可以知道,最终结果有四种情况。
情况一:目标值在数组元素中。
情况二:目标值在数组元素之前(都小于数组元素) 。
情况三:目标值在数组元素区间之内,但是数组中没有该元素值。
情况四:目标值在数组元素之后(都大于数组元素)。
相关题型
代码
暴力法
class Solution {
public int searchInsert(int[] nums, int target) {
for(int i = 0; i < nums.length; i ++ ) {
if (nums[i] >= target) {
return i;
}
}
return nums.length;
}
}
二分查找法:左闭右闭
class Solution {
public int searchInsert(int[] nums, int target) {
// 写法一:左闭右闭
int left = 0;
int right = nums.length -1;
// 二分查找法核心步骤
// 左闭右闭写法中,left == right 是有意义的
while (left <= right) {
// 找出数组区间中位数, left + ((right - left) >> 1) 相当于 (right + left) / 2, 防止溢出
int mid = left + ((right - left) >> 1);
// 情况一:如果找到直接返回数组下标
if (nums[mid] == target) {
return mid;
}else if (nums[mid] < target) {
left = mid + 1;
}else if (nums[mid] > target) {
right = mid - 1;
}
}
// 通过以上二分查找法没有在数组中找到目标值,说明符合以下三种情况
// 情况二:目标值在数组元素之前(都小于数组元素)
// 情况三:目标值在数组元素区间之内,但是数组中没有该元素值
// 情况四:目标值在数组元素之后(都大于数组元素)
// 返回 right + 1 的原因是不管上面那种情况,最终在二分查找法核心步骤中 right 都会 - 1
return right + 1;
}
}
二分查找法:左闭右开
class Solution {
public int searchInsert(int[] nums, int target) {
// 写法一:左闭右闭
int left = 0;
int right = nums.length;
// 二分查找法核心步骤
// 左闭右开写法中,left == right 是无意义的
while (left < right) {
// 找出数组区间中位数, left + ((right - left) >> 1) 相当于 (right + left) / 2, 防止溢出
int mid = left + ((right - left) >> 1);
// 情况一:如果找到直接返回数组下标
if (nums[mid] == target) {
return mid;
}else if (nums[mid] < target) {
left = mid + 1;
}else if (nums[mid] > target) {
right = mid;
}
}
// 通过以上二分查找法没有在数组中找到目标值,说明符合以下三种情况
// 情况二:目标值在数组元素之前(都小于数组元素)
// 情况三:目标值在数组元素区间之内,但是数组中没有该元素值
// 情况四:目标值在数组元素之后(都大于数组元素)
return right;
}
}