题目:
在一个长度为n的数组里的所有数字都在0到n-1的范围内、数组中的某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次,请找出数组中任意一个重复的数字,例如,如果输入长度为7的数组{2,3,1,0,2,5,3},那么对应的输出的重复数组是2或者3。
思路:
第一时间肯定会想到先排序然后在找出重复的数字,排序一个长度为n的数组需要的时间复杂度是:nlogn
第二种解法,哈希表,空间换时间(略)
第三中解法,思路:题目中有一个非常重要的描述:“一个长度为n的数组里的所有数字都在0到n-1的范围内”,由此可以知道,假如这个数组没有重复的数字,然后将这个数组排序后得到的结果肯定是数组 a[i] = i,否则就有重复的数字。這时候有人会说那不是跟第一个一样了么?当然不是,具体思路如下:从前往后遍历数组,如果数组 a[i] = i,继续往下,直到找到一个 a[i] != i 的然后a[i] 与 a[a[i]] 比较,如果它俩相等,则找到第一个重复的数字,否则将它俩进行交换,如果a[a[i]] = i;继续往下,如果 a[a[i]] != i则继续重复上一步骤。直到我们发现第一个重复的数字。
代码:
public class Solution {
// Parameters:
// numbers: an array of integers
// length: the length of array numbers
// duplication: (Output) the duplicated number in the array number,length of duplication array is 1,so using duplication[0] = ? in implementation;
// Here duplication like pointor in C/C++, duplication[0] equal *duplication in C/C++
// 这里要特别注意~返回任意重复的一个,赋值duplication[0]
// Return value: true if the input is valid, and there are some duplications in the array number
// otherwise false
public boolean duplicate(int numbers[],int length,int [] duplication) {
if(numbers == null || length <= 0){
return false;
}
//判断数组中的数字是否符合都在0和(length-1)之间
for(int i = 0; i < length; ++i){
if(numbers[i] < 0 || numbers[i] > length - 1)
return false;
}
for(int i = 0; i < length - 1; ++i){
while(numbers[i] != i){
if(numbers[i] == numbers[numbers[i]]){
duplication[i] = numbers[i];
return true;
}
int temp = numbers[i];
numbers[i] = numbers[temp];
numbers[temp] = temp;
}
}
return false;
}
}