原题内容
地上有一个 m 行和 n 列的方格,横纵坐标范围分别是 0∼m−1 和 0∼n−1。
一个机器人从坐标 (0,0) 的格子开始移动,每一次只能向左,右,上,下四个方向移动一格。
但是不能进入行坐标和列坐标的数位之和大于 k的格子。
请问该机器人能够达到多少个格子?
注意:
0<=m<=50
0<=n<=50
0<=k<=100
样例1
输入:k=7, m=4, n=5
输出:20
样例2
输入:k=18, m=40, n=40
输出:1484
解释:当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。
但是,它不能进入方格(35,38),因为3+5+3+8 = 19。
算法分析
本题可采用广度优先搜索的思想来解决。
注意如果rows或cols为0,则直接输出0就行了。
声明一个队列Q,元素类型是pair<int, int>,表示某个格子坐标。
单独分析一个格子,对于其上下左右4个格子,每个格子只要符合“行坐标和列坐标的数位之和不大于k”和没有被走过这两个条件,那么就可以把它的坐标信息push到队列Q中,每次循环,都取队首元素做以上同样分析。循环结束的条件就是Q为空,即没有可以到达的格子了。
可以用二维数组flag来存储每个格子有没有被走过。
注意地图边界的格子,不能往地图外边延伸了。比如,假设地图大小为10*10,对坐标为(9, 0)的格子分析时,我们都知道没有坐标为(10,0)和(9,-1)的格子。
完整代码
int flag[55][55];
int ans = 1, k;
int num(int x)
{
int q = 0;
while (x)
{
q += x % 10;
x /= 10;
}
return q;
}
bool f(int y, int x)
{
if (num(y) + num(x) <= k)
return true;
return false;
}
class Solution
{
public:
static int movingCount(int threshold, int rows, int cols)
{
if (rows == 0 || cols == 0)
return 0;
k = threshold;
queue<pair<int, int>> Q;
Q.push({0, 0});
flag[0][0] = 1;
while (!Q.empty())
{
pair<int, int> t = Q.front();
Q.pop();
int x = t.second, y = t.first;
/*上*/
if (y - 1 >= 0 && !flag[y - 1][x] && f(y - 1, x))
{
Q.push({y - 1, x});
ans++;
flag[y - 1][x] = 1;
}
/*左*/
if (x - 1 >= 0 && !flag[y][x - 1] && f(y, x - 1))
{
Q.push({y, x - 1});
ans++;
flag[y][x - 1] = 1;
}
/*下*/
if (y + 1 < rows && !flag[y + 1][x] && f(y + 1, x))
{
Q.push({y + 1, x});
ans++;
flag[y + 1][x] = 1;
}
/*右*/
if (x + 1 < cols && !flag[y][x + 1] && f(y, x + 1))
{
Q.push({y, x + 1});
ans++;
flag[y][x + 1] = 1;
}
}
return ans;
}
};