- 博客(56)
- 收藏
- 关注
原创 新手记录--从零开始[labelme安装及使用]
Windows系统: win+R,打开cmd,在命令行中输入 'python -V'或'python --version'过了几天后我再尝试打开labelme ,在anaconda powershell prompt中输入了"首先,点击电脑左下角的'开始',打开Anaconda PowerShell Prompt。现在我将我需要标注的图片存到了images文档之下,格式为jpg。我将报错信息喂给AI,AI回答 “此错误表明你尝试激活的。环境,在 PowerShell 里执行以下命令"
2025-04-19 15:40:19
5346
原创 毕业设计--记录篇(1)
一、毕设主要研究内容一、毕设主要研究内容工厂易燃仓储区面临显著的火灾风险,传统的火灾预警系统常常依赖人工检查,耗时且效率不高。为了提高火灾预防的自动化和实时性,本研究拟开发一套无人车自主火焰检测预警系统。二、所用设备--幻尔科技视觉小车三、环境配置--下载CUDA、cuDNN、各种包1.CUDA、cuDNN配置(1)win+R,输入cmd,在命令行中输入,可以看到我的CUDA Version为12.6,说明显卡最高支持到12.6.
2025-04-10 20:38:22
760
原创 计算机视觉-期末复习-简答/名词解释/综合设计
名词解释1.机器视觉机器视觉是使用光学器件进行非接触感知,自动获取和解释一个真实场景的图像,以获取信息或控制机器的过程。2.图像分割将前景与背景分割开。基本分割方法: (1)基于边界的分割技术:边缘检测。(2)基于区域的区域分割技术:阈值分割、区域生长。3.特征提取将最能表示目标特征的主要信息经过特定的运算提取出来,以便降低目标信息的维度。简答1.简要介绍机器视觉系统的基本组成图像采集、图像预处理、图像分割、特征提取、目标识别、反馈2.介绍图像采集的几个主要环节(1)照明。产品是光源。(2)成像。
2024-06-27 21:21:52
3387
原创 云计算-期末复习题-框架设计/选择/填空/简答(2)
负载分布架构依靠独立的负载均衡器,可以用于扩展一切IT资源;而服务负载均衡架构将负载均衡器安装到托管虚拟服务器中,云服务的副本被组织为一个资源池,工作负载均衡工作由托管虚拟服务器自行完成,专门针对云服务的扩展。云计算期末复习部分练习题,包括最后的部分框架设计大题(只是部分,全部的框架设计题太多了,选择比较容易考的整理了一下)虚拟化是将物理IT资源转换为虚拟IT资源的过程。负载均衡是把负载在两个或更多的IT资源上做均衡,与单一IT资源相比,这提升了性能和容量。7.负载均衡的虚拟服务器实例架构。
2024-06-26 20:09:21
1411
1
原创 云计算-期末复习题-选择/判断/填空/简答(1)
正确答案:云计算是一种模型,可以实现随时随地、便捷地、按需地从可配置计算资源池中获取所需要的资源,例如,网络、计算、存储、应用程序及服务等,资源可以快速地供给和释放,使管理的工作量和服务提供者的介入降低至最少。许多组织或机构根据业务差异更愿意采用混合云的方式,既保证了私有云的数据本地化,又可以利用公有云来保证弹性资源扩展。组织边界(Organizational boundary):由一家组织拥有和管理的全部IT资产和IT资源的集合,是一个物理范围。:由第三方云提供者拥有的,可公共访问的云环境。
2024-06-11 16:00:12
2490
原创 计算机视觉大项目(1)-水果分级系统
掩膜通常是一个与原始图像大小相同的二值或布尔图像,选定的区域被标记为1(或True),其余区域被标记为0(或False)。
2024-04-30 17:37:42
2799
1
原创 无人机/飞控--ArduPilot、PX4学习记录(5)
先起飞,飞至正上空10m->向北移动10m->向东移动10m->向南移动10m->向西移动10m->回到初始起飞点(即home点),降落。PX4官网上的经典案例,我做了很多注解,把代码过了一遍。这几天看dronekit,做无人机失控保护。
2024-04-10 17:37:36
2036
原创 无人机/飞控--ArduPilot、PX4学习记录(4)
这是一篇碎碎念,零零碎碎的记录了小组准备竞赛的过程,写的挺乱,>在前几篇博客中我只是安装好了python3.8,但是并没有将python3.8设置为默认版本。在命令行中输入python --version,仍然显示我的python默认使用版本为python3.6,于是我对现拥有的python版本优先级进行了设置。1之后,使用以下命令来配置默认的Python版本,这将显示一个菜单,列出可用的Python版本以及它们的优先级。选择Python 3.8对应的编号,并按Enter键确认。
2024-04-06 21:09:20
2418
5
原创 无人机/飞控--ArduPilot、PX4学习记录(3)
成功克隆ArduPilot源码、实现JMAVSim与PX4-AutoPilot代码的连接,并进行了简单交互。也可以用键盘控制飞机飞行,然后多次运行程序,这样就可以接收每一时刻的飞行状态数据了。>确定Pixhawk已经刷入ArduPilot固件,版本为。尝试连接dronekit和仿真JMAVSim,获取飞行数据。这是一篇碎碎念,零零碎碎的记录了个人学习过程,写的挺乱,并 成功运行出3D无人机界面JMAVSim。原因是我的笔记本带不动,最好使用台式机启动。>安装Dronekit,文件已存在。
2024-03-26 13:59:15
1280
原创 无人机/飞控--ArduPilot、PX4学习记录(2)
这意味着你尝试安装的版本比当前在PyPI(Python Package Index)上可用的最新版本还要新。将requirements.txt里的sympy>=1.10改为了 1.9, 问题解决。从列出的可用版本中,最高的版本是1.9,而你的。文件中sympy的版本号降低到一个可用的版本,比如。.....按照博主的步骤,一步一步来,主要是解决了。(记录的挺乱的,但是文章链接里的博客写的是真好)这是一篇碎碎念,零零碎碎的记录了环境配置过程,终于运行出来了:(出现了PX4和3D界面)
2024-03-20 16:57:55
2151
1
原创 无人机/飞控--ArduPilot、PX4学习历程记录(1)
PX4支持全球导航卫星系统(GNSS)接收器 和 罗盘(磁力计),实时动态(RTK)GPS接收器。的高级飞行状态和飞行准备提示。例如,这些提示表明飞行器是否正确校准,是否有SD卡,是否有位置锁定,是否可以安全起飞,是否解锁等。根据up主的讲解,我进行整理。飞控是最底层的控制器,直接对无人机进行控制,其他的控制系统充当高级控制器,对飞控进行控制。PX4将光流传感器输出 与 来自其他定位源(例如GPS)的信息融合,以提供更准确的位置。飞行器状态包括:位置/高度,航向,速度,空速,方向(姿态),电池电量等。
2024-03-05 15:40:21
5986
原创 数据结构--线性表的链式表示[王道]
ListDelete(&L,i,&e):删除操作,删除表L中第i个位置的元素,并用e返回删除元素的值。:假设结点*p为被删结点的前驱,仅需修改*p的指针域next,将*p的指针域next指向被删结点*q的下一结点,然后释放*q的存储空间。--方法1.传入头指针,循环遍历链表,寻找p的前驱结点 --方法2.类似于结点前插中的交换数据域,时间复杂度为O(1)2.无论链表是否为空,其头指针都是指向头结点的非空指针(空表中 头结点的指针域为空),因此空表和非空表的处理得到了统一。如何找到p结点的前驱节点?
2024-03-03 20:32:56
1282
原创 数据结构--顺序表的基本操作[王道]
本篇博客框架(画的有点潦草):1.插入操作基本思想:ListInsert(&L, i, e):插入操作。在顺序表第个位置插入新元素e。若输入的位置不合法则返回false;否则 将第i个元素及其后面的所有元素依次往后移动一个位置;表长增加1,插入成功。
2024-01-30 01:11:25
752
原创 数据结构-顺序表的实现 [王道]
因为顺序表是线性表在内存空间中连续存放的,在代码中可以通过data[i-1]来实现随机访问(静态分配、动态分配都一样)。比如在一段代码中只用到了长度为10的数组,但是最初却申请了10000个存储单元空间,这样会浪费空间。方式,拓展长度的时间复杂度也比较高,因为此过程需要复制原来的内容到新开辟的内存空间中)。若线性表采用链表存储,则每个节点还需要额外存储指针内容。插入操作平均需要移动n/2个元素,删除操作平均需要移动(n-1)/2个元素。因为存储空间是静态的。,需要强制转型为自己定义的数据元素的类型指针。
2024-01-28 01:26:30
570
原创 Acwing-语法基础习题综合[难度:简单]
注意float 和 double在何时使用,我最初使用float类型定义的PI 和 R,最后结果不通过,原因是float的精度范围太小了,改成double类型就可以。请编写一个程序,可以读取一名员工的员工编号,本月工作总时长(小时)以及时薪,并输出他的工资条,工资条中包括员工编号和员工月收入。题目来源Acwing习题,本篇博客中的题目难度为。题目序号616: 两点间的距离。题目序号604: 圆的面积。题目序号605: 简单乘积。题目序号612: 球的体积。题目序号609: 工资。题目序号613: 面积。
2024-01-23 22:36:41
790
原创 Acwing-语法基础练习
False(0) , True(1,或除了0外的值)cin 输入不会读入空格,而scanf输入会读入空格。'c', 'a' , '\n' 使用单引号括住。是double类型的扩展版,有18-19位有效数字。,但是浮点类型转换为int类型时需要向下取整。> 输入两个整数,求这两个整数的和是多少。1. 非常基础的C++ (面向程序) 框架。> 输入两个整数A,B ,用空格隔开。> 输出一个整数,表示这两个数的和。是int类型的扩展版,表示范围为。语句替换,反之则不一定。在所有算法比赛中,所有能够用。
2024-01-23 17:52:49
1085
原创 NNDL 作业13 优化算法3D可视化 [HBU]
可以看出,AdaGrad图中的轨迹图都是刚开始速度明显大于RMSprop和SGD算法的,偶尔比Momentum和Nesterov还要快,但是随着时间的增长,AdaGrad会成为图中速度最慢的算法。收敛速度快解决了AdaGrad算法的早停问题: 引入了衰减率,不会一直累积梯度平方,而是通过梯度平方的指数衰减移动平均来调整学习率,解决了AdaGrad的早衰问题。SGD较于其他几个算法,速度相对较慢,会呈现“之”字型的轨迹,并且在cs231经典动画中,SGD出现了陷入局部最小值,出不来的情况。
2024-01-03 23:25:51
1449
原创 NNDL学期知识点总结 [HBU]
人工智能-机器学习-深度学习 概念整理-CSDN博客[23-24 秋学期] NNDL-作业2 HBU-CSDN博客NNDL作业-Softmax回归风险函数与正则化 HBU-CSDN博客[23-24 秋学期] NNDL 作业4 前馈神经网络 HBU-CSDN博客[23-24秋学期]NNDL作业5 第四章课后习题 HBU_如果限制一个全连接神经网络的总神经元数量(不考虑输入层) 为n+1.输入层大小-CSDN博客[23-24 秋学期]NNDL 作业6 卷积 [HBU]-CSDN博客。
2024-01-03 12:20:53
2838
4
原创 LSTM的记忆能力实验 [HBU]
在进行自定义LSTM和Pytorch内置LSTM的对比时,我按照教材上的代码去运行,发生了一连串的报错:其中的一个报错信息为:此警告的内容是关于在非2维张量上的使用。在PyTorch中,通常用于2维张量,用于转置矩阵。当在非2维张量上使用时,它可能不会按照预期工作。使用x.mT来转置批量的矩阵。使用来反转张量的维度。尝试修改代码,不反转张量的维度:这样修改的确将错误信息消除了。但是这也只能证明了在python语法上没有错误,而这个修改对于LSTM模型架构可能会有影响。
2023-12-26 19:59:29
1520
2
原创 NNDL 作业12-优化算法2D可视化 [HBU]
2.收敛速度快解决了AdaGrad算法的早停问题: 特别是在循环神经网络中,收敛速度较快,并且引入了衰减率,不会一直累积梯度平方,对于过去的梯度,会相应的衰减,解决了AdaGrad的早衰问题。但是由于该算法会逐渐遗忘过去的梯度,只被近期的梯度所影响,在最初的时候会收敛的更快,变化幅度大。由于y轴方向上的梯度较大,因此刚开始变动较大,但是后面会根据前面较大的变动进行调整,减小更新的步伐,导致y轴方向上的更新程度被减弱,“之”字形的变动程度衰减,呈现稳定的向最优点收敛。,同时对梯度和学习率进行动态调整。
2023-12-24 16:08:49
1259
原创 NNDL 作业11 LSTM [HBU ]
这次的作业 我将主要精力都放在LSTM原理理解和公式推导部分了,选了几个B站的课程试听,最终听完了我认为讲的最详细、最适合小白听的课程,来回听了两遍。自己画了流程图,手推了前向传播过程和简单的反向传播公式。前向传播-->反向传播-->梯度爆炸梯度消失问题的来源-->缓解梯度消失的方法听的最酣畅淋漓的就是梯度爆炸梯度消失问题的来源与缓解方法。原来做作业的时候,要去分析为什么神经网络模型会出现梯度爆炸和梯度消失,得到的答案就是因为。
2023-12-18 11:45:50
791
原创 NNDL 循环神经网络-梯度爆炸实验 [HBU]
目录6.2.1 梯度打印函数6.2.2 复现梯度爆炸现象6.2.3 使用梯度截断解决梯度爆炸问题【思考题】梯度截断解决梯度爆炸问题的原理是什么? 总结前言:造成简单循环网络较难建模长程依赖问题的原因有两个:梯度爆炸和梯度消失。循环网络的梯度爆炸问题比较容易解决,一般通过权重衰减或梯度截断可以较好地来避免;梯度消失问题,更加有效的方式是改变模型,比如通过长短期记忆网络LSTM来进行缓解。本节将首先进行复现简单循环网络中的梯度爆炸问题,然后尝试使用梯度截断的方式进行解决。这里采用长度为20的数据集进行实验,训练
2023-12-16 22:09:33
322
1
原创 循环神经网络-RNN记忆能力实验 [HBU]
1.实验的初期,正在构建数据集--不同长度的数字预测数据集DigitSum,就遇到了错误:报错信息显示FileNotFoundError,文件路径错误。这里我们使用的是相对路径,而不是绝对路径,我只想着如何构建序列了,没有考虑到路径的问题。只要添加设置好路径,创建相应的文件,就可以正常运行了。python出现Errno 2] No such file or directory错误解决方法_[errno 2] no such file or directory_木心的博客-CSDN博客。
2023-12-12 23:01:02
443
原创 NNDL 作业10 BPTT [HBU]
习题6-1P 推导RNN反向传播算法BPTT.循环神经网络的参数通过梯度下降方法学习,以随机梯度下降为例,给定一个训练样本(x,y),其中:长度为T的输入序列为:长度为T的标签序列为:即在每个时刻t,都有一个监督信息,定义时刻t的损失函数为:(其中为第t时刻的输出,L为可微分的损失函数)即。随时间反向传播(BackPropagation Through Time,BPTT)算法的主要思想是通过类似前馈神经网络的错误反向传播算法来计算梯度。
2023-12-08 21:55:10
894
原创 NNDL卷积神经网络-使用预训练resnet18实现CIFAR-10分类 [HBU]
出现了2条报错(警告)信息:现在来解决警告信息:【PyTorch教程】04-详解torchvision 0.13中的预训练模型加载的更新及报错的解决方法 (2022年最新)_userwarning: arguments other than a weight enum or-CSDN博客针对第二条报错信息,解释意思为:收到的警告消息来自于PyTorch库,它告诉你关于ResNet18模型的一个即将废弃的参数使用方式。你正在使用一个即将被废弃的方式来指定模型权重,这种方式将在新版本的库中被移除。
2023-12-05 23:33:56
487
1
原创 博弈论-动态博弈、博弈树习题
括号内的第一个数字代表第一个采取行动的人的收益,第二个数字表示第二个采取行动的人的收益(有三人及以上的博弈以此类推)这一问其实最好结合第(3)问做,因为第三问给出了子博弈完美纳什均衡,根据均衡解去讨论可信性。首先从最后一个阶段开始比较参与者2所获得的博弈,由于2是理性的,5<6,所以2一定会选择h。将(3,6)提到上一个阶段,这时参与者1将进行抉择,因为4>3,参与者1选择e。再将(4,3)提至上一阶段,这时由2进行选择,3<4,所以2选择d。在第一阶段,参与者1选择了b,所以a是不可信的。
2023-12-04 11:04:42
1866
原创 NNDL 作业9 RNN-SRN简单循环神经网络 [HBU]
我更倾向于看官网的介绍,不仅可以锻炼英语能力,还能看到准确无误的一手信息nn.RNNCell官网图如下,首先介绍了RNNCell的各个parameters指非线性激活函数,device目前没有接触过,译为装置。
2023-12-03 17:19:59
529
原创 NNDL作业8 卷积-导数-反向传播[邱锡鹏DL课后题]
一旦真正的上手推,我就没有耐心了,很多很多符号和矩阵乘法叠在一起。填数的技巧(我个人使用的)是 首先在脑海里构思卷积核在input矩阵上卷积的过程,按照卷积的过程 如果w乘到了x,那么就在稀疏矩阵对应的x的拉伸过后的位置上填写上w,如果x未被w卷积到,就填0 .还有 这次的作业还有很多需要改进的地方,我都一一留下了标记,一定会改进的,老师说过作业一定要保证质量,我会铭记在心的((*^_^*))。一个1 × 1卷积核, 先得到100 × 100 × 64的特征映射, 再进行3 × 3的卷积, 得到。
2023-11-28 11:44:16
1716
原创 博弈论习题-求解纳什均衡 [HBU]
它是对博弈中的每个策略组合进行分析,判断各博弈方是否能够通过单独改变自己的策略而改善自己的得益,如果可以,则从所考察的策略组合的得益引一个箭头到改变策略后的策略组合对应的得益。划出了两条红色路径,观察参与者1的得益,很明显(b,b)策略处的参与者1的得益为9,是大于7,8的,所以参与者1有动机选择至(b,b)处。参与者2选择左时,它(参与者2)的得益为1;一个博弈的某个策略组合中的所有策略都是各个博弈方各自的上策,那么这个策略组合肯定是所有博弈方都愿意选择的,必然是该博弈比较稳定的结果,这就是上策均衡。
2023-11-27 22:10:52
2867
原创 基于残差网络实现手写体数字识别实验 [HBU]
通过ResNet团队的实验,ResNet随着网络层不断的加深,模型的准确率先是不断的提高,达到最大值(准确率饱和),然后随着网络深度的继续增加,模型准确率毫无征兆的出现大幅度的降低。更好的优化方法,更好的初始化策略,BN层,Relu等各种激活函数,都被用过了,但是仍然不够,改善问题的能力有限,直到残差连接被广泛使用。第一模块:包含了一个步长为2,大小为7×77×7的卷积层,卷积层的输出通道数为64,卷积层的输出经过批量归一化、ReLU激活函数的处理后,接了一个步长为2的3×33×3的最大汇聚层;
2023-11-25 18:07:30
390
原创 游戏开发-Havok引擎介绍
例如游戏《巫师3》中的场景设计,柔顺的马尾、摇曳的草、荡漾的溪水以及天空中蔓延的白云,这些场景元素的动态柔顺效果都基于布料模拟引擎,增添真实性、画面和谐感、艺术观赏性。大运河游戏场景中的建筑模型、天气、NPC对话、随机事件的形成就可以依靠Havok AI引擎开发,玩家在不同时间段登陆游戏或者探索地图时,可以随机生成NPC的面容、服装、动作、行进路线,可以随机生成天气状况、建筑物等。它可以通过对光源和物体的角度、距离、位置等信息进行计算,实现逼真的光照和阴影效果,为游戏画面增添更多的细节和层次感。
2023-11-25 16:43:34
1222
原创 基于LeNet实现手写体数字识别实验 [HBU]
数据集手写体数字识别是计算机视觉中最常用的图像分类任务,让计算机识别出给定图片中的手写体数字(0-9共10个数字)。由于手写体风格差异很大,因此手写体数字识别是具有一定难度的任务。。MNIST数据集是计算机视觉领域的经典入门数据集,包含了60,000个训练样本和10,000个测试样本。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28×2828×28像素)。
2023-11-19 13:27:41
556
2
原创 卷积神经网络-卷积运算、卷积算子 [HBU]
它用于检测图像中的边缘。在进行卷积运算时,将滤波器的元素与输入的对应元素相乘,然后再求和,这个结果保存到输出的对应位置。实现一个简单的二维卷积算子,二维卷积的运算方式为在一个图像(或特征图)上滑动一个卷积核,通过卷积操作得到一组新的特征。当我将输入特征图的长宽设置为7*7,可以看到当填充padding为1,步长stride为2时,输出特征图的形状变为2*4*4,长和宽为(7-3+2*1)/2+1 = 4。可以看到,当填充padding为1,步长为1时,输出特征图的形状为 2通道,长宽为8*8。
2023-11-14 19:48:42
457
1
原创 [23-24 ]NNDL作业7-基于CNN的XO识别
一、用自己的语言解释以下概念与全连接神经网络的不同之处是,卷积神经网络的后一层神经元只与前一层的部分神经元连接,只感知局部,而不是整幅图像。这种局部感知的方式使得网络能够专注于图像的局部特征,而不是全局特征。表面上看局部连接似乎损失了部分信息,但实际上后层神经元并没有损失信息。通过后面一层神经元感知局部信息不仅可以减少网络需要学习的大量参数,同时可以减少网络的冗余信息。
2023-11-14 11:30:13
672
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅