2021-07-15

集成学习2


在线性回归模型中,极大似然估计与最小二乘估计有什么联系与区别?

最小二乘估计,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。

最大似然法,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,也就是概率分布函数或者说是似然函数最大。


为什么多项式回归在实际问题中的表现经常不是很好?

多项式回归容易发生过拟合,所以预测效果并不好。


决策树模型与线性模型之间的联系与差别?

树形模型是一个一个特征进行处理,线性模型是所有特征给予权重相加得到一个新的值。决策树与逻辑回归的分类区别也在于此,逻辑回归是将所有特征变换为概率后,通过大于某一概率阈值的划分为一类,小于某一概率阈值的为另一类;而决策树是对每一个特征做一个划分。另外逻辑回归只能找到线性分割(输入特征x与logit之间是线性的,除非对x进行多维映射),而决策树可以找到非线性分割。

而树形模型更加接近人的思维方式,可以产生可视化的分类规则,产生的模型具有可解释性(可以抽取规则)。树模型拟合出来的函数其实是分区间的阶梯函数。


为什么要引入原问题的对偶问题?

1. 对偶问题将原始问题中的约束转为了对偶问题中的等式约束。
2. 方便核函数的引入。
3. 改变了问题的复杂度。由求特征向量w转化为求比例系数a,在原始问题下,求解的复杂度与样本的维度有关,即w的维度。在对偶问题下,只与样本数量有关。


用numpy 实现线性回归

代码如下(示例):

1.读入数据

import numpy as np
import matplotlib.pyplot as plt

2.读入数据

代码如下(示例):

import numpy as np
import matplotlib.pyplot as plt

def computerCost(X,y,theta):
    m = np.size(X[:,0])
    J = 1/(2*m)*np.sum((np.dot(X,theta)-y)**2)
    return J

data = np.loadtxt("./machine-learning-ex1/ex1/ex1data1.txt",dtype="float",delimiter=",")
m=np.size(data[:,0])
X = data[:,0:1]
y = data[:,1:2]

one =np.ones(m)
X = np.insert(X,0,values=one,axis=1)

theta = np.zeros((2,1))
iterations = 1500
alpha =0.01

J_history = np.zeros((iterations,1))
for iter in range(0,iterations):
    theta = theta - alpha/m*np.dot(X.T,(np.dot(X,theta)-y))
    J_history[iter] = computerCost(X,y,theta)
plt.plot(data[:,0],np.dot(X,theta),"-")
plt.plot(X[:,1],y,"rx")
plt.xlabel("Population of City in 10,000s")
plt.ylabel("Profit in $ 10,000s")
plt.show()

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值