将环球科学设为星标
周一至周五
第一时间掌握
最新鲜的全球科技资讯
· 医学 ·
有史以来最大的人类脑细胞图谱
科学家研究人类大脑疾病时,常常使用其他动物的大脑做为模型,不过这样做究竟能否查明人类大脑疾病的细胞根源,一直是个问题。最近,发表在《科学》《科学进展》《科学·转化医学》等杂志的21项研究,提供了人类及非人灵长类动物大脑在细胞类型水平上的图谱,其中包含前所未有的细节。研究者对人类的3000多个脑细胞类型进行了特征分析,从中找出人类脑细胞与其他灵长类动物的一些区别。以这样的精细程度观察人类大脑,可以帮助科学家了解哪些细胞类型最容易受到特定突变的影响、从而导致人类的神经系统疾病。
在这21项研究中,有3项研究代表了绘制人类脑细胞图谱的主要工作。其中,荷兰乌德勒支大学的神经科学家金伯利·西莱蒂(Kimberly Siletti)与她的团队使用三位已故男性捐赠者的组织样本,对人脑中106个位置的300万个细胞进行了RNA测序,为图谱奠定基础。他们的研究记录了脑细胞的461个大类,包含3000多个亚型。同样利用这三位捐赠者的样本,加州拉霍亚索尔克生物研究所的分子生物学家约瑟夫·埃克(Joseph Ecker)和同事对人脑进行表观遗传学研究,在超过50万个细胞中分析了打开或关闭基因的化学标志物,并由此识别出接近200种脑细胞类型。另一组科学家则研究了基因开关对疾病风险的影响,他们在那三位捐赠者的100多万个脑细胞中分析了细胞获取和使用遗传信息的方式,并发现某些脑细胞类型与神经精神障碍(如双相情感障碍、抑郁症及精神分裂症等)之间存在联系。这些研究是美国国立卫生研究院(NIH)大脑细胞普查网络项目(BICCN)的一部分,项目的目标包括对人类、非人类灵长类动物和小鼠的脑细胞类型进行编目,以增进对人们知之甚少的大脑疾病背后的细胞机制的理解。
· 人工智能 ·
人工智能耗电量相当于一个小国家的用电量
人工智能(AI)有望帮助程序员更快地编写代码,让司机驾驶更安全,并减少日常任务的耗时。但在10月10日发表于《焦耳》(Joule)的一篇评论文章中,Digiconomist的创始人指出,如果广泛采用人工智能,可能会产生大量的能源足迹,未来的电力需求甚至可能超过一些国家的需求。
自2022年以来,生成式人工智能经历了快速发展。训练这些AI工具需要向模型提供大量数据,是一个能源密集型的过程。总部位于美国纽约的人工智能开发公司Hugging Face报告称,其基于人工智能的多语言文本生成工具在训练期间消耗了约433兆瓦时(MWH)的电力,足以为40个普通美国家庭供电一年。而且,人工智能的能源足迹还不止于训练过程。De Vries的分析表明,每当该工具生成文本或图像时,它就会使用大量的算力和能源。例如,ChatGPT每天运行可能需要564兆瓦时的电力。这意味着,人工智能实际上属于能源密集型,所以我们也许不必在我们实际不需要AI的地方使用它。
· 天文学 ·
寻找宇宙信使,上海交大李政道研究所牵头在南海深处建中微子望远镜阵列
据上海交通大学网站消息,10月10日,上海交通大学李政道研究所正式发布南海大型中微子望远镜阵列“海铃计划”(TRopIcal DEep-sea Neutrino Telescope,TRIDENT)蓝图。他们于2019年发起并牵头的“海铃计划”旨在探索建设中国首个深海中微子望远镜,希望通过捕捉高能(亚TeV到PeV量级)天体中微子,来探索极端宇宙。这一离赤道最近的中微子望远镜阵列将利用整个地球作为屏蔽体,接收从地球对面穿透而来的中微子,并通过地球的自转探测360度全天域的中微子,同时,与现有的国际合作项目——南极冰立方以及北半球的其他中微子望远镜形成完美互补,共同溯源并探寻宇宙的奥秘。
目前,我国在多波段望远镜(如LHAASO,HXMT/eXTP,CSST, FAST)、空间引力波(如太极和天琴)和低能中微子观测站(JUNO)均已有布局。而从深空、深地到深海,海铃深海中微子望远镜将填补我国多信使天文观测网中尚且空缺的重要部分。10月9日,研究团队将海铃中微子望远镜的概念设计发表在《自然·天文学》(Nature Astronomy)杂志上。他们创新提出了新型混合探测球舱概念设计,将舱内表面紧密覆盖上多个能探测到单光子的光电倍增管(PMT),以此形成类似于果蝇的复眼结构,同时巧妙地利用PMT之间的空隙安装超快时间响应的硅光电倍增管,以便能实现无死角地观测不同方向的中微子。
按照规划,海铃中微子望远镜阵列将在2026年成为世界首个近赤道的小型中微子望远镜,开展对银河系内外的天体源搜索,并完成建设大阵列的全链技术验证;海铃终极大阵列将包括约1200根望远镜串列,直径约4公里,总占地面积约为12平方公里,超越升级后的冰立方,预期在2030年前后成为国际上最先进的中微子望远镜。(上海交通大学)
· 机器人学 ·
仿生手与用户的神经和骨骼系统融合,使用多年后仍然保持功能
图片来源:Ortiz-Catalan et al., Sci. Rob., 2023
机械连接与可靠控制是义肢的两个重要挑战。丧失肢体的患者常常会因为连接不适或不易操控而拒绝传统义肢,这也是一些科学家想要解决的问题。最近,一项发表在《科学·机器人》(Science Robotics)的研究介绍了一种新的仿生义肢,可以舒适地附着于用户的骨骼,并通过植入神经和肌肉的电极实现用户对义肢的控制。研究提到,一位右侧肘部以下截肢的女性患者,在使用这种义肢3年后,设备仍在正常工作。
这位患者在20多年前失去右臂肘部以下的部分,此后一直受到幻肢痛的困扰,且无法适应传统义肢。这种截肢面临的挑战是桡骨和尺骨应对齐并均匀负载,以及没有太多空间能用于植入。研究者为此开发了一种适合的神经肌肉骨骼植入物,放置在桡骨和尺骨的髓内,通过骨整合实现钛植入物的骨骼附着;并通过手术将患者的神经系统与义肢的电子控制系统连接起来,以便患者像控制生物手那样控制义肢。患者表示,这种仿生义肢可以更好地控制,并且疼痛有所减轻。目前,患者已日常生活活动(ADL)中使用这种设备超过3年,目前仍在继续使用。
· 生物学 ·
足球守门员体验世界的方式与众不同
图片来源:pixabay
在足球比赛中,守门员扮演着独特的角色。为了做好防守,他们必须瞬间根据不完整信息做出决定,阻止对手进球。如今,研究人员首次获得了一些确凿的科学证据,证明守门员在感知世界和处理多感官信息上与众不同。10月9日,相关研究发表在《当代生物学》(Current Biology)上。
研究人员招募了60名志愿者,包括专业守门员、其他位置球员和年龄相当的不踢足球的对照组。在每次试验中,受试者会在屏幕上看到1~2幅图像(视觉刺激)。这些图像可能伴随着一定数量(0、1、2)的哔哔声(听觉刺激)。这些刺激的呈现时间是不同的。然后,研究人员会在时间绑定窗口——来自不同感官的信号可能在感知上融合的时间窗口——中寻找这三组受试者之间的差异。结果显示,守门员在多感官处理能力上与其他人有明显的差异。具体而言,与其他位置的球员和非足球运动员相比,守门员的时间窗口更窄,这表明他们对视听线索的估计更精确且迅速。未来,研究人员希望继续探索前锋、中后卫等球员是否也会表现出感知上的差异。
封面来源:Science Magazine
撰文:栗子、王怡博