导读:最新的神经科学研究挑战了传统的认知,提出了“浅层大脑”假说,颠覆了传统对大脑层级结构的理解。相较于深度学习和预测性编码,这一新理论认为大脑架构更为扁平,每个脑区都能直接与亚皮质结构相互作用,形成大规模的并行计算单元。从感知到运动,甚至意识,各脑区都在这个浅层网络中发挥着重要作用。这项新理论可能为人工智能领域带来革新,从而为未来智能系统的发展提供新的启示。
本文总结:
解剖大脑后分析大脑的连接特性发现,我们强调深度学习和预测编码虽然是目前AI的主流,但神经生物学的证据表明分层结构可能并非神经处理的核心。
浅脑假设认为大脑具有浅层结构,由大量并行的递归神经网络组成,每个网络不仅向亚皮层区域投射,而且具有高度复杂的微电路,从而能够利用浅的皮质-亚皮质回路和皮质层次结构之间的“横向”形成的计算能力进行快速而强大的计算。
浅层大脑结构的基本单元是一个包含L5p神经元的单一丘脑-皮层-亚皮层回路。
浅脑假说模型有三个潜在的优点:局部学习,速度和灵活可拆解的跨层次特征表达方式。
浅脑理论和Jeff的A Thousand Brains有些许相似之处(https://www.numenta.com/)。
深度学习可能不是大脑处理信息机制的核心。
深度学习不仅在机器学习和人工智能领域引起了革命,而且对我们的日常生活产生了实质性影响。深度学习架构通常假设分层结构:原始输入(如像素值)被送入最底层的层次,由一系列人工神经元提供其输出(前馈)到下一个、高一层,依此类推。使用数十乃至上百层的深度学习网络能够逐渐编码更为抽象、复杂的特征或信息。由此产生的分层结构在视觉对象分类等任务中胜过了人类。深度学习架构有许多变种,其中一些除了前馈连接外还具有循环连接,但它们主要共享深层次结构。当今深度学习架构普遍采用的分层结构受到了视觉皮层早期神经生物学发现的启发,即较高的皮层区域逐渐编码更为抽象的视觉特征,如运动、轮廓和面孔。反过来,深度学习架构启发了神经科学家用分层模型来解释大脑计算。我们强调深度学习和预测编码虽然假设存在底层的分层结构,但神经生物学的证据表明分层结构可能并非神经处理的核心。虽然我们不否认分层推理可能是有用的且确实存在于皮质中,但我们强调存在另一种处理机制,即我们所称的“浅层大脑假设”。
深度神经网络一直以来在AI领域就是霸主地位的存在,这里面原因有三:首先,关于皮层区域之间连接模式的神经生物学发现揭示了皮层的分层结构组织,其中皮层区域从较低到较高的区域有序排列(见图一)。其次,一个有影响力的理论提议是这些皮层连接模式使大脑能够进行分层的贝叶斯推理。第三,计算机科学引发了一种观点,即浅层结构存在计算上的局限。但是,这三个原因在文中作者都觉得值得推敲。
图一:大脑信息处理系统像深度学习一样的层级处理。
一开始,科学家们认为大脑皮层的工作方式是分层的,特别是根据对视觉区域的研究。他们认为,信息在不同的皮层区域之间逐层传递,形成一种层级结构。这个理念来源于解剖学和神经生理学的研究,特别是观察了不同皮层区域的神经元连接和电信号传递。然而,随着研究的深入,科学家们发现了一些挑战这一传统观点的证据。他们发现,即使是在分层结构中被认为层级较高的区域,也能够直接与层级较低的区域进行双向连接。这表明信息传递并非严格按照上到下的方式进行,而是存在更为复杂的连接方式。直接的实证证据表明皮层区域,无论是较高还是较低,都可以直接和相互投射到亚皮层区域并接收来自亚皮层区域的输入(见图二),从而支持了对分层处理的替代看法,即浅层处理。
图二:大脑各区域连接方式。
第二一些重要的论文提出,皮层的分层结构使大脑能够执行层级贝叶斯推理,这是一种通过将先验知识与新输入相结合来学习数据的方式。这一层级贝叶斯推理的理念已经成为过去十年神经科学的主导框架。虽然有关在感觉皮层进行本地计算的实证支持逐渐增加,但对层级贝叶斯推理理论的关键前提进行明确测试的电生理学研究相对较少。此外,预测编码类似的算法可以在本地实现,而无需错误和预测的分层传播。最后,与浅层大脑假设最相关的是,有人指出层级预测编码可以通过丘脑计算进行介导或促进。更加功能动机的支持分层学习的观点来自深度学习。在深度学习中,主导观点是深度体系结构的性能优于浅层体系结构,并且浅层体系结构无法解决某些问题(例如数据不是线性可分的分类问题)然而,最新的证据显示之前的研究可能高估了层级对齐。
解剖大脑神经后发现深度分层连接方式并不是大脑的连接方式
怀疑分层结构的普遍可行性的主要原因源于神经生物学证据,即所有皮质区域,无论是高层还是低层,都直接连接到亚皮质结构,不仅仅是主要感觉区域(在层次结构的最低层),即使是更高级联的皮层区域(如前额叶皮层)也会投射到这些亚皮质区域。相信更高级联的皮质区域是向下发送信号以调节较低主要区域的源头;然而,更高级的皮质区域本身也会投射到亚皮质区域,如丘脑、下丘脑和脑干。对这些更高级区域的输入不仅来自于较低的皮质区域,还来自亚皮质区域;例如,来自丘脑脉络丛到更高级视觉区域的平行输入充当皮质层次发展的支架。传统上认为,初级感觉皮层构成了感觉皮质处理的第一阶段,它们的输出被认为通过计算结果传递给更高级的皮质区域进行进一步处理。然而,最近的研究发现,直接来自初级感觉区域的亚皮质投射对于先进的感觉运动控制是至关重要的。
更高级和更低级的皮质区域不仅将投射发送到亚皮质区域,而且还直接从亚皮质区域接收直接输入。丘脑广泛投射到皮质区域,例如,高级丘脑核,如丘脑、腹内和层间核以及不确定区核广泛投射到更高级和更低级的皮质区域。高级丘脑核过去被认为仅仅调节皮质活动,但最近的研究表明这些丘脑核强烈驱动皮质区域的活动,例如,前额叶皮质中的持续神经活动依赖于丘脑的中背核,而丘脑孤儿受体的存在则影响丘脑神经核。高级丘脑核还通过激活下颌间层皮质神经元或通过耦合或解耦丘脑-皮质环路和皮质-皮质环路来显着影响意识加工。因此,这些丘脑核的失活与意识障碍有关。丘脑核——一直被认为对注意力和意识至关重要的亚皮质结构——也广泛投射到更高级和更低级的皮质区域以影响全局皮质活动。丘脑神经元主要支配皮质抑制神经元并抑制全局皮质活动。积累的证据还表明,皮质的分层解剖连接模式无法解释视觉皮质神经元的一些基本功能特性。例如,不同层次结构水平的几个脑区对短暂呈现的视觉刺激几乎同时作出反应。此外,层次结构间存在直接的、相互连接的皮质连接(例如,V1到MT和V4到IT等层次结构的脑区),以及先前在小鼠皮质中被视为层次结构的连接根据新的分析方的侧向连接。这使得解剖连接模式成为更平坦的层次结构。综上所述,大脑神经科学和深度学习以及预测编码中皮质分层结构的主导性的质疑,我们相信这样的架构缺乏大脑使用的基本计算原则。本节讨论的研究结果使我们确信,这些原则远远不仅仅是通过经典的皮质层次结构进行特征抽象。
浅脑理论
因此,浅层大脑结构的基本单元是一个包含L5p神经元的单一丘脑-皮层-亚皮层回路,其中L5p神经元是主要的驱动力(图三)。有几条证据支持这一观点。首先,L5p神经元是皮质中最活跃的兴奋性神经元,与感觉运动控制、知觉和意识等过程相关。其次,向亚皮质投射的L5p神经元接收来自远程皮质区域以及整个皮质柱(在结构不太明确的物种中,可能是模块)中1-6层的几乎所有细胞类型的输入(图四)。第三,L5p细胞被认为能够学习和表示外部和内部环境的简单和更抽象的特征。根据浅层大脑假设,这是皮质的主要角色:学习不同类型特征和对象的表示,然后将其转发到亚皮质结构。L5p细胞可以以上下文相关的方式计算这些特征,因为它们的顶部树突具有与上下文和自上而下相关的处理。第四,已经证明可以在单个锥形细胞水平上计算预测和预测错误。最后,通过从高阶丘脑核投射到皮质L5p细胞的方式,可以耦合和解耦每个丘脑-皮层-亚皮质回路,展示了亚皮质结构如何积极控制哪些皮质柱参与进行中的处理。
图三:浅脑理论基本计算单元。
根据我们的假设,每个皮质柱(或模块),无论来自较低、中等还是较高区域,都代表其相应的特征(在视觉皮层中代表简单的边缘、形状和面孔等特征),并为内部认知处理和行为的全局选择做出贡献。因此,这种特征的分层表示仍然非常有用,因为它允许基于不同抽象层次的特征进行计算。然而,这种特征的分层表示需要通过另一种计算来补充:跨层次特征的组合(图五)。我们假设的一个显著特点是神经网络的浅层性质;无论是高级还是低级的皮质区域,都直接将输出发送到亚皮质运动和前运动中枢,并参与并行的快速丘脑-皮层-亚皮质回路(图三)。结构的浅层性质得到了高阶丘脑核的支持,该核提供了层次不同的皮质区域之间较短的(二突)丘脑-皮层-亚皮质连接。
图四:Lp5神经元连接方式。
浅层大脑假设进一步提出,任何皮质区域都可以直接对行为和内部认知操作的选择做出贡献。因此,诸如纹状体、丘脑或脑干等亚皮质系统可以处理来自整个皮质的大量并行输入,就像来自一个大图层一样。
图五:浅层理论跨层次特征的组合。
浅脑假说的三个优点
浅脑假说模型有三个潜在的优点:局部学习,速度和灵活可拆解的特征表达方式。
在分层皮质网络中进行学习是复杂的,因为任何成功的结果都需要在整个皮质层次上学习。在深度学习中,这通常通过一种称为反向传播的学习算法来实现,该算法根据结果的正确性调整人工神经网络的权重,以便在下一次试验中更容易实现正确的输出。反向传播有几个方面,例如需要在整个层次结构中调整权重,这使得它在大脑中难以实施(尽管不是不可能的)。在浅层脑结构中,突触强度(权重)的调整将更容易实现,因为每个皮质模块都可以直接提供单突触输入到亚皮质区域。例如,从纹状体的角度来看,整个皮质就是一个非常大的层,提供兴奋性输入,因此,原则上,只需要加强或减弱皮质-纹状体突触以进行强化学习。这并没有解决皮质中表示学习是如何发生的问题,而是强调了浅层脑处理机制在补充基于皮质可塑性的任何学习中的好处。皮质可能需要用于学习新的复杂刺激-反应映射,但一旦在皮质柱的输出和适当反应之间建立了映射,浅层脑机制就可以接管。
对于灵活可拆解的特征表达方式:浅层脑结构允许沿着皮质层次结构的多个表示对显性行为和认知操作的选择产生影响(图五)。在某些任务和情境中,较低层次的皮质处理可能计算详细信息(例如,视觉刺激方向),以便做出行为决策。相比之下,分层计算要求从较低层次的皮质处理传播详细信息至整个皮质层次结构。然而,根据浅层脑假设,较低层次的皮质处理可以通过投射到亚皮质中心,直接为思考和行动的选择做出贡献,从而将这些详细信息传播到整个层次结构是不必要的。更一般地说,任何皮质柱(或模块)的输出都可以直接访问亚皮质中心,从而允许组合性,即将简单特征组合成复杂表示。根据我们的假设,皮质柱的输出构成了原语,这些原语在亚皮质区域的水平上灵活地组合在一起。浅层脑结构的一个具体预测是,在任何给定任务中,当需要合并低层次和高层次(面部)信息时,这是通过在亚皮质区域的水平上合并相应皮质柱的输出来完成的。类似地,当低层次和高层次处理的信息会竞争以激发相互冲突的决策时,这种竞争可以在亚皮质区域中解决,而不是在皮质中。这可能更为高效,因为低和高皮质区域在解剖学上相对较远,而它们在丘脑或其他亚皮质区域的水平上的输出却是在一起汇聚的。因此,皮质计算增加了一层上下文、组合复杂性,这可以集成到亚皮质决策中。此外,皮质和亚皮质中心之间的通信线可能使大脑在解决任务时能够避免在皮质和亚皮质计算之间出现差异时的冲突。当处理新的刺激或情境时,特别需要皮质上下文、组合处理。然而,如果皮质已经形成了解决任务所需的表示,亚皮质结构可以接管。
用一个通俗易懂的例子:假设你正在走路,突然看到地上一些危险的东西,比如一个障碍物。在传统的分层视图中,信息会从你的眼睛(视觉皮质)通过多个处理层次传递,比如从视觉皮质到更高级别的认知区域,最终决定采取行动,例如绕过障碍物。
而根据浅层脑结构的假设,信息处理更为直接。你的视觉皮质不仅会传递信息到高级认知区域,还会直接连接到与运动控制相关的亚皮质区域。这意味着在处理障碍物的决策时,低层次的视觉信息可以直接影响运动控制,而不必等待高级认知区域的复杂处理。这种浅层结构的优势在于它可以更迅速地做出反应,因为信息不必在整个分层结构中传递。这使得大脑能够更有效地处理需要快速决策的情况,例如在危险的环境中行走。这种浅层结构的理论认为,大脑的工作方式更加灵活、快速,并且不完全依赖于复杂的分层处理。
总结
在这篇透视性文章中,作者对当前在深度学习和预测编码中广泛使用的分层皮层结构提出了质疑。根据神经解剖学和电生理学的证据,作者提出了“浅层脑”假说,为大脑中的大规模并行计算提供了新的视角。文章强调了每个较高或较低的皮层区域如何与亚皮层区域相互连接,并且我们尚未充分理解每个皮层微电路的非凡计算能力。该假设认为大脑具有浅层结构,由大量并行的递归神经网络组成,每个网络不仅向亚皮层区域投射,而且具有高度复杂的微电路,从而能够利用浅的皮质-亚皮质回路和皮质层次结构之间的“横向”形成的计算能力进行快速而强大的计算。
作者希望“浅层脑”假说能够激发研究人员更多地关注开发考虑这种浅层结构的计算模型,其中包括大量的并行丘脑-皮层-亚皮质回路。为了刺激这方面的发展,作者提出了一些可测试的预测。文章强调了皮层微电路的计算能力。然而,“浅层脑”假说的关键在于只有当它们与亚皮质的相互作用得到充分考虑时,皮层微电路的真正能力才能被理解。文章提到一些令人兴奋的工作已经证明了丘脑如何维持和支持皮质计算,但“浅层脑”假说预测这种现象是普遍的——当特定地操纵丘脑-皮质-亚皮质回路时,皮质活动将受到实质性影响。为了检验不同亚皮质区域和回路的贡献,必须进行系统的研究,使用光遗传学和药理遗传学手段。
“浅层脑”假说提出了亚皮质投射的L5p神经元是通过浅层结构实现快速而强大计算的关键组成部分,因为它们直接接收亚皮质输入并将它们的输出发送到亚皮质区域。在学习过程中,涉及到多种细胞类型在多个皮层区域的缓慢层次计算,但我们预测随着学习的进行,突触的可塑性变化将塑造皮层电路,使得这些亚皮质投射的L5p神经元接管层次计算并加速进行。这一预测与在啮齿动物运动学习中的成像研究中的先前观察是一致的,但可能适用于其他皮层区域和其他类型的学习(如表示学习)。
“浅层脑”假说预测,该假说的计算模型和人工智能实现将在某些应用中优于传统体系结构——特别是在需要组合性和不同层次的特征灵活组合的任务中。此外,这里提出的架构可以为新型人工智能算法奠定基础,例如模块化深度学习体系结构。此外,“浅层脑”假说预测,当需要合并低级信息和高级信息时,这不是在皮质中进行的,而是通过组合相应的皮质处理区域的输出来进行的,即在亚皮质区域的层面。同样,当低级信息和高级信息竞争时,这种竞争是在亚皮质区域解决的,而不是在皮质中。