来源:陈方的发现数学之旅
图的模空间是数学中一个迷人的主题,与各种领域有联系,包括拓扑、代数几何和数学物理。特别是它与代数曲线理论密切相关,代数曲线是可以用双变量方程描述的几何对象。图的模空间的另一个重要性质是它的拓扑。模空间可以看作是一个几何对象,空间上不同的点对应不同的图形。该领域的关键问题之一是了解空间的拓扑结构,以及它如何随着顶点和边的数量的变化而变化。
互联网上有个“老胡说科学”,据他介绍:最近,一个超级难的数学问题--图的模空间有了新突破, 而且来自于量子场论技术的应用。美国两位数学家发布了一个新成果,证明了图的模空间有大量的数学结构。他们是利用量子场论语言的重新构想了这个问题,使用量子场论的技术得出了模空间中存在某些结构,但没有明确地揭示这些结构是什么。
在研究过程中,他们想到了用费曼图来理解图的模空间。费曼图是理论物理学中用来表示亚原子粒子行为及其相互作用的可视化工具。他们把这些图想象成宇宙的一个简单版本中的物理系统,在这个宇宙中,只有一种类型的粒子。为了得到正确的计数,量子场论框架需要一些调整。
他们证明了在给定秩的图的模空间中存在大量的上同调类,尽管找不到它们。他们没有直接研究上同调类,而是研究了欧拉示性数. 这个数提供了模空间的一种测量方法。可以在不改变它的欧拉示性数的情况下,以某种方式修改模空间,使得欧拉示性数比上同调类本身更容易获得。他们也没有直接处理图的模空间,而是研究了一种称为“脊柱(spine)”的东西--本质上是整个空间的骨架。脊柱与模空间本身具有相同的欧拉示性数特征,更容易处理。计算脊柱上的欧拉示性数可以归结为计算大量对图的集合。
最终他们证明了当n变大时,秩为n的图的模空间的欧拉示性数显著地为负。这意味着在每个模空间中, 有很多非平凡上同调类有待被发现。虽然他们的论文中没有包含关于这些上同调类的进一步揭示,但对于那些试图寻找它们的研究人员来说,这是一个令人鼓舞的结果。
【体验物理,感悟数学】 “成也欧拉,败也欧拉”
我们在这里介绍这个数学家利用现代物理学理论解决数学难题的案例,除了想说明数学与物理学相互缠绕的复杂关系外,也想谈点这两位数学家所用证明方法中的数学方法创新问题。
我们由于数学水平有限,还不能完全理解他们这个创新证明方法的全过程。但其中关于他们利用欧拉示性数的证明方法,我们认为这也是他们取得新突破的关键所在。上面讨论的“图的模空间”问题成了阻碍图论发展的难题,还有著名的“四色问题”,看似一个初等数学游戏,确成了世界最难的数学问题。
因此,当这两位数学家利用量子场论重构“图的模空间”问题后,这个问题自然回归到图的本原--需要研究它们的欧拉示性数--既包含“面”的数学问题了。
更有意思的是,当我们把“四色问题”回归到研究图的“面”的逻辑关系问题时,一种简明的初等数学证明方法就被找到了。这个具体的证明方法将在后面的附录专题中再祥细介绍。
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”