加州大学伯克利分校:《面向科学发现的多模态基础模型:在化学、材料和生物学中的应用》...

图片

“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。(点击这里查看欧米伽理论)

来源:欧米伽未来研究所

这部报告围绕多模态基础模型在科学领域的应用展开。由加州大学伯克利分校的研究人员 Shengchao Liu 和 Hannan Xu。Shengchao Liu 发布。

报告题目是《面向科学发现的多模态基础模型:在化学、材料和生物学中的应用》。该报告聚焦于多模态基础模型在化学、材料和生物学等领域的应用研究,深入探讨了从基础概念、技术原理,到各领域具体的单模态、多模态建模方法及应用案例,还对未来发展进行展望,为相关领域利用多模态基础模型推动科学发现提供了全面且深入的参考 。

报告内容简介

在科技飞速发展的当下,人工智能(AI)与科学研究的融合正以前所未有的速度推进,为各个领域带来了全新的突破和机遇。其中,多模态基础模型在化学、材料和生物学等领域的应用尤为引人注目,它宛如一把钥匙,正逐渐打开科学发现的新大门。

AI 助力科学研究的显著成果

AI 在科学领域的应用成果丰硕。在蛋白质结构预测方面,AlphaFold2 的出现堪称重大突破。以往,确定蛋白质的三维结构是一项极具挑战性的任务,传统实验方法不仅耗时费力,还需要大量的资源投入。而 AlphaFold2 借助深度学习技术,能够根据蛋白质的氨基酸序列准确预测其三维结构,这一成果在 2021 年发表于《自然》杂志,为生物学研究提供了强大的工具,极大地加速了药物研发、疾病机制研究等相关领域的进展。在天气预测领域,3DEST(3D Earth-specific transformer)模型同样表现出色。它通过对大量气象数据的学习和分析,能够更精准地预测天气变化,为人们的生活和生产活动提供可靠的气象信息,减少自然灾害带来的损失。这些成功案例充分展示了 AI 在科学研究中的巨大潜力,也为多模态基础模型的发展奠定了坚实的基础。

多模态基础模型:概念、边界与多模态的力量

基础模型(FM)是一类具有强大学习能力的模型,它能够从大规模数据中学习到通用的知识和模式,为各种应用提供基础支持。多模态基础模型则是在此基础上,融合了多种不同类型的数据,如图像、文本、音频等,以更全面地理解和处理复杂的问题。在化学、材料和生物学研究中,多模态信息的融合至关重要。例如,在化学领域,仅依靠分子结构数据可能无法全面了解分子的性质和反应特性,但如果结合文本数据,如相关的化学文献、实验报告等,就能够获取更多关于分子的信息,从而更深入地研究化学反应机理,设计出更有效的药物和材料。这种多模态的融合方式能够充分发挥不同数据模态的优势,弥补单一模态的不足,为科学研究提供更丰富、更准确的信息,显著提高研究的效率和准确性。

多模态基础模型的技术基石

分子与几何:微观世界的精准描述

在化学、材料和生物学研究中,对分子和几何结构的准确描述是基础。以氨基酸为例,丙氨酸残基和半胱氨酸残基具有独特的结构,它们的原子组成和空间排列方式决定了蛋白质的性质和功能。小分子甘氨酸、蛋白质 7LCJ 以及晶体材料 Po 等,它们的结构都有着各自的特点。科学家们通过不断探索和研究,利用先进的技术手段,能够精确地解析这些分子和材料的结构,为后续的研究提供了重要的基础数据。这些结构信息不仅有助于我们了解物质的基本性质,还能为药物设计、材料优化等应用提供关键的指导。

数据结构:搭建信息的桥梁

数据结构在多模态基础模型中起着至关重要的作用,它就像是搭建信息桥梁的基石。在研究分子时,我们不仅要关注分子的二维拓扑结构,还要深入了解其三维几何结构,因为三维结构与分子的功能密切相关。此外,分子复合物中的力也是研究的重要内容,通过对力的分析,我们可以了解分子之间的相互作用,从而更好地理解化学反应的过程。在描述分子表面时,原子、分子流形和网格点等概念被广泛应用。比如,NucleusDiff 模型通过对分子表面的精确描述,能够更准确地进行基于结构的药物设计;MaSIF(Molecular Surface Interaction Fingerprint)则通过提取分子表面的相互作用指纹,为研究分子间的相互作用提供了有力的工具。这些数据结构的合理运用,使得多模态基础模型能够更高效地处理和分析复杂的科学数据。

密度估计与生成建模:探索数据的奥秘

密度估计与生成建模是多模态基础模型中的核心技术之一,它旨在探索数据背后的分布规律,生成具有相似特征的新数据。在这一领域,能量基模型(EBM)、变分方法、自回归模型等发挥着重要作用。EBM 通过定义能量函数来描述数据的分布,变分方法则通过优化近似分布来逼近真实分布,自回归模型则按照一定的顺序依次生成数据的各个部分。扩散模型和流匹配技术是近年来的研究热点。扩散模型通过在数据中逐渐添加噪声,然后学习如何去除噪声来生成数据;流匹配技术则通过构建流形来匹配数据的分布,从而实现更高效的生成建模。这些技术的不断发展和创新,为多模态基础模型在化学、材料和生物学中的应用提供了强大的支持。

预训练:赋予模型先验知识

预训练是多模态基础模型的关键环节,它就像是给模型注入了丰富的先验知识。通过在大规模数据上进行预训练,模型能够学习到通用的特征和模式,从而在面对具体任务时,能够更快地适应和优化。自监督学习是预训练中常用的方法,它通过利用数据自身的结构和信息来进行训练,无需大量的人工标注数据。InfoNCE、SimCLR、BYOL、MAE 等方法都是自监督学习的典型代表。这些方法通过不同的方式最大化不同视图之间的一致性,从而使模型学习到更有效的特征表示。预训练使得模型在处理化学、材料和生物学数据时,能够更好地理解数据的内在规律,提高模型的性能和泛化能力。

多模态基础模型在化学与材料领域的应用

单模态建模:各显神通

在化学和材料领域的单模态建模中,多种方法各展其长。指纹(Fingerprint)方法通过对分子的特定特征进行编码,生成独特的指纹向量,以此来表征分子结构,在分子相似性搜索和性质预测等方面具有广泛应用。字符串(String)表示法,如 SMILES、SELFIES 等,以简洁的文本形式描述分子结构,方便计算机处理和存储。神经网络指纹(Neural Fingerprint)则借助神经网络的强大学习能力,更精准地捕捉分子的特征。消息传递神经网络(MPNN)能够有效处理分子图结构数据,在量子化学研究中发挥重要作用。SE (3)- 等变建模考虑了分子的旋转和平移对称性,为分子结构和性质的研究提供了更准确的模型。

在预训练阶段,N-Gram Graph、GraphMVP、MoleculeSDE、GeoSSL-DDM 等方法不断涌现。N-Gram Graph 通过对分子图的拓扑结构进行预训练,为下游任务提供了有力的支持;GraphMVP 则结合了 2D 和 3D 几何信息,实现了更有效的分子图表示学习;MoleculeSDE 利用随机微分方程进行分子多模态预训练,能够更好地捕捉分子结构的动态变化;GeoSSL-DDM 通过几何自监督学习,提高了模型对分子几何结构的理解和处理能力。这些预训练方法的应用,显著提升了单模态模型的性能。

在下游任务中,DeepMD 和 NeuralMD 等模型用于分子动力学模拟,能够精确预测分子的能量和力,为研究分子的动态行为提供了重要手段。Character VAE、Grammar VAE、HierVAE 等模型则在分子设计领域发挥着重要作用,它们能够生成具有特定性质的分子结构,为新药研发和材料设计提供了创新的思路。EDM、DiffCSP、MatterGen、CrystalLLM、FlowLLM、AssembleFlow 等模型在晶体结构预测、材料生成等方面取得了显著成果,推动了化学和材料领域的发展。

从单模态到多模态建模:融合创新

从单模态到多模态建模的转变,是化学和材料领域研究的重要突破。GraphCG 模型通过最大化潜在空间中方向和步长之间的互信息,成功解决了深度生成模型中语义可解释性和可学习性的问题。它能够在分子图和点云等数据上进行操作,实现对分子结构的可控编辑。在分子图的编辑中,GraphCG 可以根据用户的需求,有针对性地改变分子的结构,如调整分子中的官能团数量,从而实现对分子性质的调控。这一模型的出现,为多模态信息的融合和利用提供了新的思路和方法。

多模态建模:全面探索与深入应用

在多模态建模方面,研究人员进行了广泛而深入的探索。KV-PLM 和 MolT5 等模型在早期探索阶段取得了重要成果。KV-PLM 能够有效融合分子结构和生物医学文本信息,在分子性质预测和药物发现等任务中表现出色;MolT5 则专注于分子与自然语言之间的转换,为化学研究提供了更便捷的交流和理解方式。

MoleculeSTM、3DToMolo、MoleculeSTM-3D、MOFFUSION 等模型在分子结构与文本的交互方面发挥着重要作用。MoleculeSTM 通过对比学习,实现了基于文本的分子检索和编辑,能够根据用户输入的文本描述,快速准确地找到相关的分子,并对其进行编辑;3DToMolo 则在文本 - 3D 空间中对分子进行优化,考虑了分子的三维结构和物理化学性质,使分子设计更加合理;MoleculeSTM-3D 结合了 3D 结构和文本信息,在反应性导向的分子编辑任务中表现优异;MOFFUSION 利用 3D 建模技术,实现了对金属有机框架材料的多模态条件生成,为材料设计提供了更多的可能性。

ChatDrug、Co-scientist、AI Co-scientist 等模型则展现了多模态基础模型在推理和规划方面的强大能力。ChatDrug 能够根据用户输入的文本提示,对药物分子进行编辑和设计,提高药物的性能;Co-scientist 通过与科学家的交互,实现了自主化学研究,能够提出合理的研究假设和实验方案;AI Co-scientist 则通过多智能体系统,不断优化研究假设,加速科学研究的进程。

多模态基础模型在生物学领域的应用

单模态建模:解析生命的密码

在生物学的单模态建模中,MSA Transformer、MaSIF、AlphaFold2 等模型在蛋白质表示方面发挥着核心作用。MSA Transformer 通过对多序列比对的学习,能够捕捉蛋白质序列中的进化信息,为蛋白质结构和功能的研究提供重要线索;MaSIF 从分子表面的几何和化学特征出发,提取蛋白质分子表面的相互作用指纹,有助于理解蛋白质 - 蛋白质相互作用;AlphaFold2 则凭借其卓越的蛋白质结构预测能力,为生物学研究提供了高精度的蛋白质三维结构信息。

ProteinTeritiary、Foldseek、GearNet、CLEAN 等模型在预训练阶段取得了显著成果。ProteinTeritiary 利用蛋白质的三级结构进行自监督预训练,学习到蛋白质的结构特征;Foldseek 通过快速准确的蛋白质结构搜索,为蛋白质研究提供了高效的工具;GearNet 基于图的对比学习,增强了蛋白质结构的表示能力;CLEAN 则通过对比学习进行酶注释,提高了酶功能预测的准确性。

在下游任务中,AI BMD 2 在蛋白质分子动力学的从头算表征方面表现出色,能够精确模拟蛋白质的动态行为;FrameDiff、FoldFlow、SurfGen、NucleusDiff 等模型在蛋白质结构生成和设计领域取得了重要进展,为蛋白质工程和药物研发提供了有力的支持。

多模态建模:揭示生命的奥秘

在生物学的多模态建模中,ProGen、ProteinDT、Chroma、ESM3、ProteinDT-3D 等模型展现出强大的能力。ProGen 作为条件蛋白质语言模型,能够根据输入的控制标签生成多样化的人工蛋白质序列,为蛋白质功能研究和设计提供了新的方法;ProteinDT 实现了文本引导的蛋白质编辑,通过自然语言描述对蛋白质进行精确的修改;Chroma 通过可编程的生成模型,为蛋白质结构的研究提供了新的视角;ESM3 模拟了 5 亿年的蛋白质进化,有助于深入理解蛋白质的进化机制;ProteinDT-3D 则在文本引导的蛋白质进化任务中表现出色,为蛋白质的定向进化提供了技术支持。

总结与展望:多模态基础模型的未来之路

多模态基础模型在化学、材料和生物学领域的应用已经取得了令人瞩目的成果,但这仅仅是一个开始。未来,随着技术的不断发展和创新,多模态基础模型有望在更多领域实现突破。在技术发展方面,我们期待模型能够更加高效地处理和融合多模态数据,提高模型的准确性和泛化能力。通过引入更先进的算法和架构,如基于量子计算的模型、具有更强推理能力的模型等,进一步提升多模态基础模型的性能。

在应用拓展方面,多模态基础模型将在药物研发、材料设计、疾病诊断和治疗、生物多样性保护等领域发挥更大的作用。在药物研发中,能够更快速、准确地筛选和设计出具有高效低毒特性的药物;在材料设计中,能够开发出具有特殊性能的新型材料,满足不同领域的需求;在疾病诊断和治疗中,能够实现更精准的疾病预测和个性化治疗方案的制定;在生物多样性保护中,能够更有效地监测和保护生物物种。多模态基础模型的发展也面临着一些挑战,如数据隐私保护、模型的可解释性等问题,需要我们在发展过程中加以解决。但相信在科学家们的共同努力下,多模态基础模型将为人类的科学研究和社会发展带来更多的惊喜和贡献。

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

a704b6252ba3f020cd6cdc7b8b424766.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

b40a5041d067a98226d79a6aba02cee8.jpeg

截止到2月28日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 《核聚变,确保 21 世纪美国的主导地位的关键技术》

  2. 《世界知识产权组织:2025WIPO 技术趋势报告:交通运输的未来(145 页)》

  3. 《世界知识产权组织(WIPO):2024 年世界知识产权指标报告(194 页)》

  4. 《联合国环境规划署:2024 年保护地球报告(81 页)》

  5. 《联合国工发组织:2024 清洁技术创新能力建设框架研究报告(51 页)》

  6. 《凯捷:Applying TechnoVision 2025:未来科技趋势及应用愿景(17 页)》

  7. 《谷歌:2025 年 AI Agent 白皮书:AI 智能体时代来临(42 页)》

  8. 《富而德律师事务所:2024 年国际仲裁趋势年度回顾报告(41 页)》

  9. 《邓白氏:2024 年全球企业破产报告(27 页)》

  10. 《LLM 时代小模型的应用潜力与挑战 》(50 页)

  11. 《斯坦福 2025 斯坦福新兴技术评论十项关键技术及其政策影响分析报告》(英文版 191 页)

  12. 《英伟达:2025NVIDIA 自动驾驶安全报告(26 页)》

  13. 《微软 MICROSOFT (MSFT) 2024 年影响力摘要报告(23 页)》

  14. 《高德地图:2024 年中国主要城市交通分析报告(29 页)》

  15. 《德勤 & CAS:2025 锂离子电池回收行业报告 - 面向绿色未来的市场及创新趋势(36 页)》

  16. 《ABI Research:2025 生成式人工智能在语义和实时通信中的应用研究报告(20 页)》

  17. 《2025 年 3D 打印技术发展趋势、产业链及相关标的分析报告(45 页)》

  18. 《生成式基础模型的可信度 —— 指南、评估与展望》(231 页)

  19. 《量子信息科学与技术对国家安全的影响》(118 页)

  20. 《中国科学技术信息研究所:2024 科技期刊世界影响力指数(WJCI)报告(68 页)》

  21. 《思略特(Strategy&):2025 汽车行业的人工智能(AI)机遇研究报告(12 页)》

  22. 《赛默飞:2024 年中国生物科技行业调研报告:资本寒冬中生物科技企业的生产之道(18 页)》

  23. 《清华大学:2025 年 DeepSeek 与 AI 幻觉报告(38 页)》

  24. 《美国企业研究所(AEI):2025 创新未来电力系统研究报告:从愿景迈向行动(71 页)》

  25. 《超材料的智能设计研究进展》

  26. 《Ember:2030 年全球可再生能源装机容量目标研究报告(29 页)》

  27. 《量子信息科学与技术对国家安全的影响》

  28. 《英国人工智能安全研究所:2025 年国际人工智能安全报告 - 执行摘要(22 页)》

  29. 《世界海事大学:2024 海事数字化与脱碳研究报告:可持续未来(250 页)》

  30. 《艾睿铂(AlixPartners):2024 回溯过往锚定未来:大型科技公司如何推进人工智能愿景研究报告(18 页)》

  31. 《Wavestone :2025 数据与 AI 雷达:掌握数据与人工智能转型的 10 大挑战研究报告(30 页)》

  32. 《CSIS:2024 中美学术的再联结研究报告:在激烈竞争的时代增进相互理解(120 页)》

  33. 《MSC:2025 全球国防创新就绪度差距系列报告:突破制约国防创新的六大隐性障碍(第四版)(32 页)》

  34. 《2025 年 AI 编程发展前景及国内外 AI 编程应用发展现状分析报告(22 页)》

  35. 《中国核电 - 公司深度报告:世界核电看中国 - 250218(22 页)》

  36. 《医药生物行业:医疗器械行业全景图发展趋势及投资机会展望 - 250216(28 页)》

  37. 《皮尤研究中心:2024 美国社交媒体使用情况研究报告(英文版)(30 页)》

  38. 《科睿唯安:2025 基因编辑领域的领先创新者洞察报告 - 改变药物发现和开发范式的八大创新者(47 页)》

  39. 《经合组织(OECD):2025 年全球脆弱性报告(218 页)》

  40. 《计算机行业年度策略:AI 应用元年看好 Agent、豆包链及推理算力三大主线 - 250218(38 页)》

  41. 《国金证券研究所:从理想走向现实,全球人型机器人研究报告》

  42. 《深度解读 DeepSeek 原理与效应(附 PPT 下载)》

  43. 《兰德公司(RAND):2025 借鉴危机经验构建城市水安全韧性研究报告:五城案例分析(62 页)》

  44. 《凯捷(Capgemini):2025 行业创新洞察:电气化飞机推进系统研究报告(27 页)》

  45. 《国际能源署(IEA):2025 全球电力市场报告:至 2027 年的分析与预测(200 页)》

  46. 《Zenith:2025 年国际消费电子展(CES)趋势报告:AI 对消费科技、消费行为及传媒营销的变革性影响(17 页)》

  47. 《RBC 财富管理:全球透视 2025 年展望报告(33 页)》

  48. 《美国国防部和国家安全领域的十大新兴技术》(96 页)

  49. 《代理型人工智能全面指南》(45 页 ppt)

  50. 《麦肯锡 2025 人类工作中的超级代理。赋能人类解锁 AI 的全部潜力》(英文版 47 页)

  51. 《仲量联行(JLL):2025 美国制造业的复兴全面分析报告:未来制造业增长及工业需求前瞻(26 页)》

  52. 《未来的太空领域:影响美国战略优势的领域》

  53. 《Luminate:2024 年年终美国影视行业报告:数据及趋势洞察(40 页)》

  54. 《Anthropic:2025 年 AI 经济影响报告:AI 如何融入现代经济的各类实际任务(38 页)》

  55. 【ICLR2025】《LLMS 能否识别您的偏好?评估 LLMS 中的个性化偏好遵循能力》

  56. 《改进单智能体和多智能体深度强化学习方法》(219 页)

  57. 《美国安全与新兴技术中心:2025 中国学界对大语言模型的批判性思考通用人工智能 AGI 的多元路径探索研究报告》(英文版 29 页)

  58. 《世界经济论坛 & 麦肯锡:2025 以人才为核心:制造业持续变革的当务之急研究报告(40 页)》

  59. 《超越 ChatGPT 的 AI 智能体》(82 页 ppt)

  60. 《Harris Poll:2024 年汽车技术预测报告:消费者对先进汽车技术与功能的洞察(14 页)》

  61. 【新书】《人工智能智能体的应用》(527 页)

  62. 《哥伦比亚大学:超越 Chatgpt 的 AI agent 综述》

  63. 《欧盟标准组织 - 体验式网络智能(ENI)- 基于人工智能代理的下一代网络切片研究》

  64. 《中国科学院:2024 开放地球引擎(OGE)研究进展与应用报告(55 页)》

  65. 《中国工程院:2024 农业机器人现状与展望报告(70 页)》

  66. 《美国安全与新兴技术中心:2025 中国学界对大语言模型的批判性思考:通用人工智能 (AGI) 的多元路径探索研究报告(29 页)》

  67. 《罗兰贝格:2050 年全球趋势纲要报告之趋势五:技术与创新(2025 年版)(72 页)》

  68. 《理特咨询(ADL):2025 解锁聚变能源:驾驭聚变能商业化的机遇与挑战研究报告(20 页)》

  69. 《埃森哲:技术展望 2025—AI 自主宣言:可能无限信任惟先 - 摘要(12 页)》

  70. 《怡安(AON):2025 年气候和自然灾难洞察报告(109 页)》

  71. 《美国安全与新兴技术中心:2025 AI 翻车事故(AI incident):强制性报告制度的关键要素研究报告(32 页)》

  72. 《牛津经济研究院 2025 确保英国充分释放量子计算的经济潜力研究报告 》(英文版 64 页)

  73. 《欧洲创新委员会(EIC):2024 年科技报告(65 页)》

  74. 《大模型基础 完整版》

  75. 《国际人工智能安全报告》(300 页)

  76. 《怡安(AON):2025 年全球医疗趋势报告(19 页)》

  77. 《前瞻:2025 年脑机接口产业蓝皮书 —— 未来将至打造人机交互新范式(57 页)》

  78. 《联合国(United Nations):2024 技术与统计报告:从业者投资法指南(67 页)》

  79. 《经济学人智库(EIU):2025 全球展望报告:特朗普再次当选美国总统的全球影响(16 页)》

  80. 《大规模视觉 - 语言模型的基准、评估、应用与挑战》

  81. 《大规模安全:大模型安全的全面综述》

  82. 《Emplifi:2024 年 Q4 全球电商行业基准报告 - 社交媒体趋势洞察(37 页)》

  83. 《DeepMind:2025 生成式魂灵:预测人工智能来世的益处和风险研究报告(23 页)》

  84. 【AI4Science】《利用大型语言模型变革科学:关于人工智能辅助科学发现、实验、内容生成与评估的调研》

  85. 《世界银行:2025 极端天气高昂代价:气候变化背景下的马拉维金融韧性构建研究报告(76 页)》

  86. 《北京理工大学:2025 年中国能源经济指数研究及展望报告》

  87. 《Space Capital:2024 年第四季度太空投资报告(22 页)》

  88. 《NetDocuments:2025 年法律科技趋势报告(32 页)》

  89. 《CB Insights:2024 年度全球企业风险投资(CVC)状况报告:私募市场交易、投融资数据及分析(130 页)》

  90. 《Artlist:2025 年全球内容与创意趋势报告(59 页)》

  91. 《IBM 商业价值研究院:2024 投资人工智能伦理和治理必要性研究报告:AI 伦理前线五位高管的真实故事(24 页)》

  92. 《世界基准联盟(WBA):2025 塑造未来:对可持续发展目标(SDGs)影响最大的 2000 家公司研究报告(46 页)》

  93. 《清华大学:2025 年 DeepSeek 从入门到精通(104 页)》

  94. 《麦肯锡:2025 工作场所中的超级代理 (Superagency):赋能人类解锁人工智能的全部潜力(47 页)》

  95. 《凯捷(Capgemini):科技愿景 2025:关键新兴科技趋势探索(54 页)》

  96. 《硅谷银行(SVB):2025 年上半年全球创新经济展望报告(39 页)》

  97. 《BCG:2025 工业运营前沿技术:AI 智能体 (AI Agents) 的崛起白皮书(26 页)》

  98. 《DrakeStar:2024 年全球游戏与电竞行业报告(26 页)》

  99. 《理特咨询(ADL):2025 人工智能驱动的研究、开发与创新突破的新时代研究报告(80 页)》

  100. 《互联网安全中心(CIS):2024 年网络安全冬季报告:回顾与展望(30 页)》

  101. 《方舟投资(ARK Invest):Big Ideas 2025 - 年度投研报告(148 页)》

  102. 《DeepSeek:2024 年 DeepSeek-V2 模型技术报告:经济、高效的混合专家语言模型(52 页)》

  103. 《CB Insights:2024 年度全球风险投资状况回顾报告:私募市场交易、投融资和退出数据及分析(273 页)》

  104. 《全国智标委:2025 城市生命线数字化标准体系研究报告(105 页)》

  105. 《经合组织(OECD):2024 年全球政府创新趋势报告:促进以人为本的公共服务(46 页)》

  106. 《DeepSeek_R1 技术报告》

  107. 《摩根斯坦利报告 —DeepSeek 对于科技和更广义经济的含义是什么?》

  108. 《李飞飞最新 S1 模型的论文:s1 Simple test-time scaling》

  109. 《世界经济论坛 -《全球经济未来:2030 年的生产力》报告》

  110. 《2035 年技术融合估计:量子互联网、人机接口、机器学习系统、隐形机器人、增材制造》

  111. 《百页大语言模型新书》(209 页 pdf)

  112. 《量子技术和网络安全:技术、治理和政策挑战》(107 页)

  113. 《大语言模型中的对齐伪造》(137 页)

  114. 《2035 年技术融合估计:量子互联网、人机接口、机器学习系统、隐形机器人、增材制造》(美陆军 232 页)

  115. 《美国防部 CDAO:人工智能模型的测试与评估》(66 页 slides)

  116. 《自动驾驶的世界模型综述》

  117. 《Questel2024 深度学习领域专利全景报告》(英文版 34 页)

  118. 《深度解析 Palantir》(20250122_204934.pdf)

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值