“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。(点击这里查看欧米伽理论)
来源:欧米伽未来研究所2025
《能源与人工智能》是国际能源署(IEA)于2025年2月发布的《世界能源展望》特别报告,共304页。该报告探讨了人工智能与能源部门的双向关系:AI需要多少能源及其供应来源;以及AI如何应用于能源部门以提升安全性、可负担性和可持续性。
报告指出,AI已成为21世纪最具影响力的技术之一,大型AI数据中心耗电量相当于10万户家庭,而最大型的数据中心耗电量将达到20倍。在基准情景下,数据中心排放将从当前的1.8亿吨增至2035年的3亿吨。
报告强调AI在能源优化方面的潜力,包括优化电力系统运行、资源勘探和能源技术创新。例如,在蛋白质结构测绘领域,AI实现了45,000倍的加速。然而,能源部门尚未充分利用AI潜力,面临数据获取、数字基础设施和技能缺口等障碍。
报告分为五章:AI与能源关系概述、数据中心能源需求趋势、AI优化能源部门应用、AI推动能源创新、政策与行业影响。
概述
人工智能(AI)能力的阶梯式提升源于计算成本下降、数据可用性激增和技术突破。AI是使机器能够学习执行传统上需要人类智能的任务的科学。AI正在成为一种通用技术,类似于电力。如今,它可以生成文本和视频,加速医学或材料科学等领域的科学发现,使制造机器人更智能高效,在复杂的城市环境中驾驶商业出租车,并检测关键基础设施的威胁。
近年来,AI已从学术追求转变为市值和风险投资达数万亿美元的产业。自2022年以来,标普500指数中与AI相关公司的市值已增长约12万亿美元。尽管其采用和影响存在若干不确定性,但AI的快速发展和巨大潜力使其成为企业战略、经济政策和地缘政治的核心。
然而,没有能源就没有AI;同时,AI有潜力改变能源行业。可负担、可靠和可持续的电力供应将成为AI发展的关键决定因素,能够快速大规模提供所需能源的国家将处于最有利的地位。AI模型的训练和部署在大型且耗电的数据中心中进行。一个典型的AI数据中心消耗的电力相当于10万户家庭,但目前在建的最大数据中心将消耗20倍于此的电力。
决策者和市场缺乏评估影响的工具
能源行业处于当今最重要的技术革命之一的核心。然而,对能源和AI之间这种日益深入的连接的影响仍缺乏理解。与其识别和探索能源行业新兴问题的强大记录一致,这份国际能源署(IEA)新的特别报告旨在通过迄今为止最全面、以数据为驱动的分析填补这一空白。该分析基于数据中心电力需求的新全球模型和全面数据集,并通过与决策者、科技行业、能源行业和其他专家的深入磋商过程得到了丰富。
数据中心目前占全球电力消耗的比例较小,但其局部影响更为显著
自2022年以来,全球数据中心投资几乎翻了一番,2024年达到5000亿美元。这一投资热潮引发了对电力需求激增的担忧。
2024年,数据中心约占全球电力消耗的1.5%,即415太瓦时(TWh)。美国在2024年全球数据中心电力消耗中占最大份额(45%),其次是中国(25%)和欧洲(15%)。全球数据中心电力消耗自2017年以来每年增长约12%,比总电力消耗率高四倍多。面向AI的数据中心可以消耗与铝冶炼厂等电力密集型工厂相当的电力,但它们的地理集中度要高得多。美国近一半的数据中心容量集中在五个区域集群。该行业在本地市场占据了相当大比例的电力消耗。
数据中心的电力需求到2030年将增加一倍多
数据中心电力消耗到2030年将增加一倍多,达到约945 TWh。这略高于日本当前的总电力消耗。AI是这一增长的最重要驱动因素,此外还有对其他数字服务日益增长的需求。美国占这一预计增长的最大份额,其次是中国。在美国,数据中心占从现在到2030年电力需求增长的近一半。到本十年末,该国用于数据中心的电力消耗将超过铝、钢铁、水泥、化学品和所有其他能源密集型商品生产的总和。2030年后的不确定性进一步扩大,但我们的基准情景预计,到2035年全球数据中心电力消耗将增至约1200 TWh。
满足需求需要多样化的能源来源
可再生能源和天然气在满足数据中心电力需求方面居领先地位,但各种能源都有望做出贡献。全球数据中心需求增长的一半由可再生能源满足,并得到储能和更广泛电网的支持。到2035年,可再生能源发电将增长超过450 TWh以满足数据中心需求,建立在短期交付时间、经济竞争力和科技公司的采购策略基础上。以天然气为主的可调度能源也发挥着关键作用,科技行业还帮助推动新的核能和地热技术。天然气扩张175 TWh以满足数据中心不断增长的需求,尤其在美国。核能为满足数据中心需求贡献了大约相同的额外发电量,特别是在中国、日本和美国。首批小型模块化反应堆将在2030年左右投入使用。
数据中心是电力时代加速电力需求增长的几个驱动因素之一
数据中心约占2030年全球电力需求增长的十分之一,低于工业电机、家庭和办公室空调或电动汽车的份额。然而,数据中心在推动电力需求方面的重要性因国家而异。新兴和发展中经济体已经经历了快速的电力需求增长。在这些国家,数据中心约占到2030年电力需求增长的5%。另一方面,发达经济体经历了几十年基本停滞的电力需求。在这组国家中,数据中心占到2030年需求增长的20%以上,这是一个警示,表明需要再次将电力行业置于增长轨道上。
在将数据中心整合到电网时,更智能意味着更快
许多地方的电网已经承受压力:我们估计,除非解决这些风险,否则约20%的计划中数据中心项目可能面临延迟风险。包括数据中心在内的供应和消费项目的电网连接队列又长又复杂。在发达经济体建设新的输电线路可能需要4到8年,而对变压器和电缆等关键电网组件的等待时间在过去三年中翻了一番。发电设备也有很大需求。新建燃气发电厂的涡轮机交付现在面临几年的交付周期,可能将其投产延迟到2030年以后。如果电力行业不加快步伐,满足数据中心负载增长的风险可能需要在其他目标如电气化、制造业增长或可负担性之间做出权衡。
缓解这些风险的关键选择包括在电力和电网可用性高的地区建立新的数据中心,以及更灵活地运营数据中心服务器或其现场发电和储能资产。这些策略仍未得到充分探索。一个面向AI的数据中心的资本密集度是铝冶炼厂的10倍,这意味着为了向电网提供灵活性而削减其运营成本非常高。但许多数据中心都有备用服务器容量缓冲。监管机构可以探索激励数据中心运营商更灵活地使用备用服务器容量或其备用发电或储能资产的措施。电网运营商还可以研究激励将数据中心设置在电网限制较少的地区。我们发现,美国50%正在开发的数据中心位于现有的大型集群中,可能增加局部瓶颈的风险。
AI相关电力需求前景存在很大不确定性
在AI将多快被采用、它将变得多么有能力和生产力、效率改进将多快发生以及能源行业的瓶颈是否能够解决等方面存在不确定性。这些不确定性在敏感性案例中得到探讨。起飞情景假设AI采用率更高,并采取积极行动减少能源行业瓶颈。逆风情景包括AI采用和为其提供动力的能源基础设施建设的瓶颈,包括宏观经济逆风。我们的高效率情景强调了AI相关硬件和AI模型效率更强增益的潜力。在这种情况下,2035年数据中心的电力需求比基准情景低20%。到2035年,我们各情景中的数据中心电力需求范围从700到1700 TWh。在我们的起飞情景中,满足数据中心需求的燃气发电增长是逆风情景的四倍。满足数据中心需求的核能输出增长变化更大。
AI可以为能源行业解锁重大效率和运营收益
AI已被能源公司部署,用于转变和优化能源和矿物供应、电力生产和传输以及能源消费。正在推行的目标众多,包括降低成本、增强供应、延长资产寿命、减少停机时间和降低排放。
石油和天然气行业是AI的早期采用者,利用它优化勘探、生产、维护和安全。在勘探和开发方面,AI可以使资源评估更可靠,减少钻前不确定性。在运营中,它被用于优化和自动化生产过程、检测泄漏、预测维护需求,并支持减少甲烷排放的努力。
AI可以帮助平衡越来越复杂、分散和数字化的电力网络。AI可以改善可变可再生能源发电的预测和整合,减少削减和排放。基于AI的故障检测可以帮助快速识别和精确定位电网故障,减少30-50%的停电时间。远程传感器和基于AI的管理可以增加输电线路的容量。如果应用这些工具,可以释放高达175吉瓦(GW)的输电容量,而无需建设任何新线路。这超过了基准情景中到2030年数据中心电力负载的增加。
未来的工业将越来越数字化和自动化;在制造业整合AI方面走在前列的国家和公司将跃居领先地位。AI应用可以加速产品开发,降低成本并提高质量。广泛采用现有AI应用优化工业流程可以节约的能源相当于今天墨西哥的总能源消费量还多。欧洲公司拥有工业自动化解决方案市场份额的一半以上,这是工业AI部署的关键促成因素。
交通运输中的AI应用可以提高效率并节约成本,但也可能增加对个人出行的需求。AI应用被用于管理交通、优化路线、预测维护需求和开发自动驾驶车辆。在整个交通运输部门广泛采用AI应用可能导致节能相当于1.2亿辆汽车使用的能源。虽然自动驾驶车辆比传统车辆运行更高效,但随着成本下降和可用性增加,它们也可能吸引人们远离公共交通,导致反弹效应。
在建筑领域,AI主导的优化有巨大潜力使供暖和制冷系统更高效,建筑中的用电更灵活。实现这一潜力的障碍包括建筑物所有权的分散、缺乏数字化和激励不足。如果扩大规模,现有的AI主导干预可能导致全球电力节约约300 TWh,相当于澳大利亚和新西兰今天的年发电量之和。
加速创新可能是AI对能源部门最显著的长期影响之一
AI正成为科学发现的强大工具,帮助研究人员更快地发现、测试和商业化创新。例如,在生物医学领域,AI导致蛋白质结构映射加速了45000倍——这对设计新药至关重要。新能源技术的创新周期通常跨越数十年。减少这一时期对于实现能源部门的可持续性和竞争力等目标至关重要。然而,能源初创企业筹集的股权中只有2%流向了具有AI相关价值主张的公司。
能源创新挑战的特点是AI擅长解决的问题类型。例如,下一代太阳能光伏材料中只有0.01%被实验性生产,还有大量可能的材料有待探索。AI可以让科学家大大加速寻找和测试有前途的材料、电池化学成分和碳捕获分子的过程。将需要政策支持AI主导的发明,并加速商业化,这通常是新产品比发现阶段更大的障碍。
能源部门尚未充分利用AI
能源是当今世界最复杂和关键的部门之一,但它可以并且应该做更多工作来获取利用AI的潜在好处。能源部门面临实现AI广泛采用的障碍,包括缺失或不足的数据和数字基础设施、技能获取,以及持续的数字和物理安全担忧,这些常常超过潜在的效率收益。与其他部门相比,能源部门中AI相关技能的普及度要低得多。需要政策和监管变革,使能源部门能够抓住AI的好处。
AI可能加剧某些能源安全担忧,同时帮助解决其他问题
数据中心组件的供应链复杂且全球化。例如,镓是一种越来越关键的金属,用于尖端计算机芯片和电力电子,与传统的硅基半导体设计相比提供显著的效率优势。中国目前约占全球精炼镓供应的99%。我们的估计表明,到2030年,数据中心对镓的需求可能达到今天供应量的10%以上。
AI加剧了一些能源安全风险,但它也在网络和物理领域提供解决方案。随着AI能力的增长,各种行为者使用和滥用它们的能力也在增长。对能源公用事业的网络攻击在过去四年中增加了三倍,并因AI而变得更加复杂。同时,AI正成为防御它们的关键工具。在物理领域,配备AI的卫星和传感器可以比传统的地面方法快500倍检测关键能源基础设施中的事件,并具有高空间分辨率。随着能源安全性质的演变,IEA将继续监测这一关键问题。
新兴和发展中经济体可以直接跳跃到AI解决方案
除中国外的新兴和发展中经济体占世界互联网用户的50%,但全球数据中心容量不到10%。有可靠和负担得起的电力记录的国家将最有利于解锁数据中心增长,本地化对本土AI发展至关重要的计算能力,并更普遍地刺激IT产业。数据中心还可以成为新的低排放电力项目的锚点。然而,在频繁停电或电力质量问题的地区,维护数据中心可能有风险或成本高昂,使海外托管对企业更具吸引力。在发展中经济体也有AI的前景看好的应用案例,帮助解锁新的效率并优化流程。克服数字化障碍可以帮助这些经济体直接跳跃到提供成本和时间节约的AI解决方案。
关于AI可能加速气候变化的担忧似乎被夸大,同样夸大的还有AI单独解决这一问题的预期
数据中心的电力使用产生的排放从今天的1.8亿吨增长到基准情景2035年的3亿吨,在起飞情景中高达5亿吨。虽然这些排放在此期间仍低于能源部门总排放量的1.5%,但数据中心是增长最快的排放源之一。
广泛采用现有AI应用可能导致的减排远大于数据中心的排放量——但也远小于解决气候变化所需的减排量。我们估计,广泛应用现有AI主导解决方案的减排量相当于2035年能源相关排放量的约5%。需要克服AI采用的各种障碍才能释放这些收益。反弹效应——例如从公共交通转向自动驾驶汽车——可能会削弱其中一些好处。AI可以是减少排放的工具,但它不是万能药,也不能消除主动政策的需要。
能源和科技现在共同前进,合作是关键
科技部门和能源行业比以往任何时候都更加紧密相连。前进的道路上存在很大的不确定性,但这些不应妨碍协调一致的行动。为AI提供能源,并抓住AI为能源带来的好处,将需要科技部门和能源行业之间更深入的对话和合作。在此过程中,将有风险需要管理。IEA将继续提供数据和稳健分析,以便在AI采用展开时为决策提供信息,并帮助能源和技术部门做好更充分的准备。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https://wx.zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI 2025 关于人工智能研究未来研究报告
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
壳牌:2025 能源安全远景报告:能源与人工智能(57 页)
盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)
Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)
IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)
DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt
联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)
TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)
NAVEX Global:2024 年十大风险与合规趋势报告(42 页)
《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页
2025 - 2035 年人形机器人发展趋势报告 53 页
Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)
【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt
Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)
谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新 170 页
美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)
罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)
兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)
康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)
国际能源署:2025 迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)
牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)
国际能源署(IEA):能效 2024 研究报告(127 页)
Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)
CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)
安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)
IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)
IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)
美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)
艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)
NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)
IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)
AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)
2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)
华为:2025 鸿蒙生态应用开发白皮书(133 页
《超级智能战略研究报告》
中美技术差距分析报告 2025
欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)
美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)
罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)
兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)
GTI:2024 先进感知技术白皮书(36 页)
AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)
安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)
哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)
德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)
奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)
Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150 页!《DeepSeek 大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)
真格基金:2024 美国独角兽观察报告(56 页)
璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
未来今日研究所 2025 年科技趋势报告第 18 版 1000 页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)
浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)
人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)
大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)
北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)
欧盟委员会 人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)
RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)
FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)
Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)
【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt
《21 世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)
光子盒:2025 全球量子计算产业发展展望报告(184 页)
奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)
Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)
《人类与人工智能协作的科学与艺术》284 页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115 页
《2025 年技术展望》56 页 slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)
Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)
北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)
北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)
CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)
中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)
AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)
上下滑动查看更多