自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8629)
  • 收藏
  • 关注

转载 Clawdbot火了,Anthropic急了,Claude Code连夜更新了Agent任务系统。

但是,大多数做Agent的人,还是喜欢站在Anthropic的肩膀上,学习他们分享的博客、ClaudeCode的范式,然后往上加自己的东西。其实他们没有先后顺序,Claude 想先做哪个就做哪个,有时候它会先做C,然后发现C依赖B,然后再回去做B,来来回回浪费一堆时间。看起来是改了个名字,但是,这可能是最近很长一段时间,cc最重要的更新之一了。也就是说,以后不管是换电脑,还是开多个会话,我们都可以轻松做到进度同步。这也意味着,我们可以自己打开文件,看claude具体做到了,不再是它说做完了就做完了。

2026-01-29 18:56:45 20

转载 DeepSeek又拿第一!首创「因果流」视觉推理,超越Gemini

未来,同一个编码器只要配备不同的模态查询嵌入(Query Embeddings),就能处理文本、图片、音频等多种模态的数据,真正实现万物皆可Token,万物皆可因果推理。它最大的特点是用一个轻量级的大语言模型(Qwen2-0.5B)替换了原本的CLIP编码器,并设计了一种独特的「因果流查询」(Causal Flow Query)机制。这一次,DeepSeek更进一步,对视觉编码器下手了,提出了一种全新的DeepEncoder V2架构,实现了视觉编码从「固定扫描」向「语义推理」的范式转变!

2026-01-29 18:56:45 24

转载 AI破解基因组天书,可分析1兆碱基,谷歌DeepMind模型AlphaGenome登《Nature》封面

基于此,谷歌 DeepMind 的研究人员提出了 AlphaGenome,它以 1 兆碱基的 DNA 序列作为输入,能够预测数千个功能基因组轨迹,最高可达单碱基对分辨率,涵盖多种模态,包括基因表达、转录起始、染色质可及性、组蛋白修饰、转录因子结合、染色质接触图谱、剪接位点使用情况以及剪接连接点的坐标和强度。1. 疾病理解:通过更准确地预测基因破坏,AlphaGenome 可以帮助研究人员更精准地查明疾病的潜在病因,并更好地解释与某些性状相关的变异的功能影响,从而可能发现新的治疗靶点。

2026-01-29 18:56:45 19

转载 人工智能观察:从悟空、二向箔到科技共和国

在今日我们探讨的智能体经济中,每一个由代码和数据驱动的AI Agent,正像是孙悟空吹出的那一根根“毫毛”,它们被期望能够自主理解任务、调用工具、相互协作,最终完成单一智能体难以企及的复杂目标,此乃智能体的“神通”。在智能体经济中,“紧箍咒”的现代化身智能合约构成的信任与规则体系,如同被编码的、不可篡改的“咒语”,实现原子性支付、可编程的价值分配,以及复杂的激励模型。它确保了智能体在“神通”运行时,其行为是可信、可控且符合预设经济规则的,防止其“闯祸”或“失灵”,这即是内生安全的“紧箍咒”。

2026-01-27 20:57:37 33

转载 自然·人类行为:解锁人类语言系统性结构的认知密码

我们完全可以构想多种 “非自然语言”:一种是 “非自然拆分” 的语言,用 “gol” 同时指代猫的头部和狗的头部,用 “nar” 指代猫的身体和狗的身体,打破了“局部性”的意义-形式精准对应;我们完全可以构想多种 “非自然语言”:一种是 “非自然拆分” 的语言,用 “gol” 同时指代猫的头部和狗的头部,用 “nar” 指代猫的身体和狗的身体,表达同样场景时会说 “A gol with a nar”;预测信息最小化意味着语言序列的局部可预测性更高,这能减少大脑加工语言时的认知负荷,提升交流效率。

2026-01-27 20:57:37 17

转载 PNAS | 只用1.4%的“关键相关”,就能预测全脑活动?用信息论量化人脑的“可压缩性”

(Fig. 5A),但相较“只选最强相关”的网络,最优网络明显更偏向连接不同系统(Fig. 5B、5C)。这篇工作把“脑网络到底要看多少条边”从经验问题升级为可计算的最优化问题:用最大熵(maximum entropy)把“选边”映射为对全脑状态的预测,再用minimax entropy直接找出在给定稀疏度下最能降低不确定性的关键相关骨架。更直观的是,当只拟合10%相关时,模型已能定量预测剩余90%的相关结构(Fig. 2C、2E),而随机选边会明显丢失结构并系统性低估相关强度(Fig. 2D、2F)。

2026-01-26 15:10:29 16

转载 陶柯霏 :神经网络中的顿悟

在数据有限、规则清晰的情况下,模型必须理解隐藏在数据中的模式和规律才能实现泛化,有助于快速验证顿悟理论和假设,加深对神经网络泛化能力的理解。如果模型权重范数初始化为较大值,模型会首先快速移动到一个过拟合的解,因为此时训练损失最小化,在没有正则化的情况下模型会停留在过拟合的状态,因为训练损失在过拟合解的山谷中梯度几乎为零,泛化不会发生。但该方法的成功高度依赖于源任务和目标任务之间的相似性,对于更复杂的操作,简单移植基础算术的组件可能不足以提供有效的先验知识,复杂任务可能需要发现全新的、更复杂的算法。

2026-01-26 15:10:29 22

转载 DeepSeek-R1推理智能从哪儿来?谷歌新研究:模型内心多个角色吵翻了

过去两年,大模型的推理能力出现了一次明显的跃迁。通过对推理输出进行分类,以及结合作用于推理轨迹的机制可解释性方法,研究发现,诸如 DeepSeek-R1 和 QwQ-32B 等推理模型,相较于基线模型和仅进行指令微调的模型,展现出显著更高的视角多样性。谷歌、芝加哥大学等机构的研究者最近发表的一篇论文给出了一个更具结构性的答案,推理能力的提升并非仅源于计算步数的增加,而是来自模型在推理过程中隐式模拟了一种复杂的、类多智能体的交互结构,他们称之为「思维社会」(society of thought)。

2026-01-26 15:10:29 45

转载 全球顶尖大模型,通关不了“宝可梦”:这些游戏都是AI的噩梦

而当Gemini 3 Pro最终通关《宝可梦蓝》时,它为自己留下了一段非任务必需的备注:“为了诗意地结束,我要回到最初的家,与母亲进行最后一次对话,让角色退休。在追求通用人工智能(AGI)的道路上,开发者发现,即便AI能在司法考试中名列前茅,在面对以下几类复杂游戏时,依然面临着难以逾越的“滑铁卢”但在《宝可梦》这类长期任务中,工具集的差异被放大至足以决定成败的程度。与一次性问答式的传统基准不同,《宝可梦》能在极长时间内持续追踪模型的推理、决策与目标推进过程,这更接近现实世界中人类希望AI执行的复杂任务。

2026-01-25 17:56:50 66

转载 对人工智能视觉系统进行压力测试:重新思考对抗图像的生成方式

与以往仅操纵特定频段的频率感知方法不同,IFAP采用了一种新的频谱包络约束。“我们相信,我们的研究成果可以用于开发高度可靠的人工智能模型,应用于医疗诊断等领域,这些模型不会受到图像质量或噪声的轻微变化的影响,”奥田教授说。在此背景下,日本同志社大学理工学研究科的博士生吉田正友和教授奥田正弘开发了一种方法,使对抗样本中的加性噪声与图像的“光谱形状”对齐。

2026-01-25 17:56:50 25

转载 研究发现,人工智能代理即将遭遇数学瓶颈

大多数人工智能公司都押注,如果输入足够的数据,LLM 将能够实现近乎完全的自主思考和行动,其方式与人类类似,甚至拥有更丰富的集体知识。论文的结论虽然相当简单,但推导过程却运用了不少复杂的数学知识。简而言之,论文指出,某些提示或任务需要比逻辑学习模型 (LLM) 处理能力更复杂的计算,在这种情况下,模型要么无法完成请求的操作,要么会错误地执行任务。

2026-01-25 17:56:50 34

转载 估值35亿美元,LeCun创业公司官宣核心方向,掀起对Next-token范式的「叛变」

在 LeCun 看来,LLM 的局限性包括幻觉等问题,而这在医疗等领域是一个严重隐忧,LeBrun 对此也深有体会,他曾在接受媒体采访时提到,他接受这份工作的一个重要原因是希望将世界模型应用于医疗健康领域。在硅谷,所有公司都在做同一件事,挖同一条战壕,彼此争夺工程师,却很少有人敢真正走一条不同的路,因为一旦偏离主流方向,就可能在竞争中落后。

2026-01-24 18:02:29 32

转载 AI与我们的未来 | 杰弗里·辛顿(Geoffrey Hinton)在霍巴特的主旨演讲及答疑(全文)

另一种范式是受生物学启发的方法,它认为:看,我们知道的唯一具有智能的东西就是大脑。如果大脑想解决某个复杂的问题,它会进行大量的练习,在练习的过程中,它会学习这些连接的强度,直到擅长解决该问题。如果有 10000 个代理,每个代理分别学习互联网的不同片段,并对各自学习到的参数变化进行加权平均,转瞬之间,所有代理都能同时拥有全部知识。我的连接强度对你没有用,因为你的神经元略有不同。人们认为智能的本质是推理,而进行推理的方式是你拥有用某种特殊逻辑语言编写的符号表达式,并通过操作它们来导出新的符号表达式。

2026-01-24 18:02:29 126

转载 中科院AI芯片新路径登Science!铁电材料新结构突破存储密度极限

因为那些为了维持平衡而大量富集的间隙氧和氧空位,恰恰就是可以在晶格中自由流动的电荷载体,它们将原本阻碍传导的“墙”,彻底改造为了离子高速流通的“管”。这种极高的存储密度,结合其独特的离子传输特性,契合了类脑计算对高能效、多级存储及突触行为模拟的需求,为未来人工智能硬件的物理实现提供了全新的赛道。该发现揭示了氧离子“自我平衡”的电荷屏蔽机制,不仅突破了传统二维畴壁的存储密度瓶颈,还发现了这种一维结构具备独特的“极化-离子”耦合传输特性。

2026-01-24 18:02:29 55

转载 图灵奖得主Bengio斩获AAAI 2026大奖!5篇杰出论文,华人占3篇

与之相对,他们提出的「广义接地图框架」(Generalized Grounding Graphs)能根据自然语言指令的层次化组合语义结构,动态实例化特定指令的概率图模型。新方法直接将此前SOTA的EVA02模型在长文本和短文本检索任务上的性能提升了16.5%,将一个仅在英语数据上训练的CLIP模型转变为业界领先的跨语言模型。

2026-01-23 17:54:14 67

转载 大模型答题总翻车(幻觉)?清华大学新方法:先挑错再写答案,正确率飙升还不花钱!

但 AI 是 “ autoregressive(自回归)” 生成的,简单说就是 “顺着自己的思路往下说”,更在乎表达流畅,反而容易忽略逻辑严谨性 —— 就像人太相信自己的第一判断,陷入 “自我中心”,看不到错误。核心思想特别简单:给大模型提问题时,别让它直接 “一步一步想答案”,而是先扔给它一个候选答案(哪怕是随机猜的、无关紧要的),让它先验证 “这个答案对不对”,再自己写正确答案。AI 也一样~ 让它先验证一个 “外部答案”,能避免它顺着自己的错误思路一条道走到黑,减少 “想当然” 的错误。

2026-01-23 17:54:14 86

转载 Nature NPJ人工智能发表:AI物理推理进入新阶段,一个能“自我纠错”的多智能体系统

而物理模拟恰恰需要持续的、可追踪的、多轮次的推理。如果把物理模拟比作一场精密的工程仪式,那么 LLM 就像一个聪明但缺乏工程训练的学生,它能侃侃而谈、能解释概念、能写出漂亮的段落,但一旦让它真正“算”一个物理过程,它就会暴露出本质弱点。波动智能旨在建立一个基于人类意图与反应的真实需求洞察及满足的价值体系,融合人工智能与意识科学,构建覆盖情绪识别、建模与推荐的智能引擎,自主研发面向社交、电商等场景的多模态意图识别引擎、意图标签系统及意图智能推荐算法,形成从情绪采集、意图建模到商业转化的完整解决方案。

2026-01-23 17:54:14 54

转载 复旦团队重大突破:世界首款纤维芯片问世!

据介绍,传统芯片的光刻工艺普遍依赖平整的硅晶圆衬底,而纤维不仅具有曲面结构,表面积极小,用于制备纤维器件的弹性高分子基底,也很难耐受光刻过程中的各类极性溶剂。实验推算显示,按照目前实验室级1微米的光刻加工精度,长度为1毫米的“纤维芯片”可集成数万个晶体管,其信息处理能力可与一些医疗植入式芯片相当。该“纤维芯片”不仅保持了纤维柔软、可编织的本征特性,

2026-01-22 18:04:56 63

转载 推翻150年数学直觉:数学家烧坏几台笔记本,解决几何拓扑难题

此外,正如他们所希望的那样,这个光滑的犀牛可以生成一对新的环面,它们具有相同的平均曲率和度量数据,但整体结构不同。然后,他们利用这个曲面生成了一对新的 Bonnet 曲面 —— 这一次,是两个非常扭曲的环面,它们显然是不同的曲面,但仍然具有相同的度量和平均曲率。计算机程序会产生舍入误差:Sageman-Furnas 的犀牛形状可能看起来符合所需的标准,它生成的 Bonnet 对也可能看起来是环面,但这都可能只是假象,是微小计算误差造成的假象。这意味着这张纸和圆柱体拥有相同的「度量」,即距离的概念。

2026-01-21 17:46:27 46

转载 视觉幻象还是真实突破?中日联合研究质疑DeepSeek“读图”新成果

这项曾被誉为能让AI“一目十行”甚至“过目不忘”的革命性创新,在科学家的显微镜下显露出了尴尬的一面:它可能并不是真的“看懂”了文件,而是凭借强大的语言直觉在“猜”内容。在严格的受控实验中,研究者故意遮挡了文档中的关键视觉信息,或者输入了一些视觉上极难辨认的乱码图片,DeepSeek的模型竟然依然能“读”出通顺的句子。一旦文档中出现了不符合常规逻辑的真实数据,过度依赖“语言直觉”的模型极有可能无视眼前的视觉证据,强行输出它认为“合理”但实际错误的各种信息。

2026-01-21 17:46:27 70

转载 来自中科院 AI 安全国家重点实验室的反思,多智能体系统的工作流生成或许走错了方向

(2)C1–C3总结了我们对查询级工作流的反思:top-k任务级工作流、top-1工作流的repeat-k运行和真正的查询级生成产生了相当的覆盖率/性能。当研究团队意识到“查询级工作流并非总是必要”以及“任务级工作流的全量执行评估既昂贵又不可靠”之后,一个新的问题自然浮现出来, 如果我们不想为每个 query 生成工作流,也不想为每个候选工作流做全量执行,那有没有一种更聪明、更经济、更可扩展的方式来选择最优工作流?也就是说,即便你花了巨量 token 去评估,最终得到的排序也可能是不稳定的,甚至是随机的。

2026-01-21 17:46:27 43

转载 MIT、哈佛等让细胞「记住」自己的基因活动历史,首次在哺乳动物细胞中记录转录组状态

然而,它们的功能自此一直未知。另一种方法是在试管中,在实验的单一时间点(通常是实验结束时),测量 mRNA 分子,并与其他细胞中的分子进行比较。这些被称为 TimeVault 的细胞储存单元,可能有助于揭开抗癌药物耐药性和干细胞生物学的秘密,揭示过去事件如何塑造细胞的未来。团队发现,通过这些改造,时间宝库在 24 小时内捕获了人类细胞系产生的 mRNA 分子中的一小部分,并至少储存了一周。细胞的状态随时间而调整,若要理解细胞如何做出自己的决策,需要能够将过去的分子状态与未来的表型结果联系起来。

2026-01-20 18:13:32 52

转载 Nature Sensors:国内首篇,仿生触觉新突破!清华团队研发“鸽眼”传感器,让机器人感知逼近人类!

集成至机器人系统,支持抓取、识别、人机交互等实际任务这一架构的核心创新在于实现了物理传感-特征提取-语义理解的端到端一体化设计,将传统分离的传感与解读过程有机融合,为机器人提供了类人的触觉感知与认知能力。,缺乏能够融合多模态触觉信息并进行语义推理的智能模型,导致机器人“有感无知”,难以实现类人的触觉认知与交互决策。,总参数量达8.6B。

2026-01-20 18:13:32 118

转载 Nature:大脑如何通过经验来“预测未来”?最新研究发现海马中奖赏的“预测性编码”新机制

钙成像数据经预处理校正运动伪影、分割细胞、提取钙瞬变及反卷积信号轨迹,跨实验阶段及个体共记录神经元504±101个,同时采用20×18 cm自动化触摸屏箱监测小鼠行为,该装置含正面触摸屏、后方奖励端口及顶部红外摄像机训练小鼠执行延迟非位置匹配任务,起始后屏幕随机呈现单侧样本,小鼠鼻触后进入延迟阶段,延迟结束后声光电信号提示其返回笼尾穿光束启动选择阶段,需选择非匹配方块以获奖励;综上,随经验积累,海马对奖赏本身的编码减弱,而对奖赏前线索的编码增强,体现出从反应性表征向预测性表征的动态转变。

2026-01-19 17:23:47 65

转载 物理学家所理解的熵:从热力学、统计物理,到生成模型

集智学园联合上海大学李永乐教授推出了《统计物理基础》课程,带你进入到物理的世界中思考,它不是一门枯燥理论或公式推导的课程,因为有些推动物理学的重要公式也并非是通过严格的数学推导得到的,而是一门锻炼物理思考能力的课程,从无序中发现有序,从微观到宏观,来为复杂系统进行建模。从“万物终将腐朽”的熵增定律出发,本文系统梳理了熵在热力学与统计物理中的严格定义,展示其如何作为连接微观与宏观的核心桥梁,并进一步走向量子体系、非平衡过程,乃至生成式人工智能模型,揭示熵在理解复杂系统与智能涌现中的深层意义。

2026-01-19 17:23:47 69

转载 只剩5年?诺奖得主Hassabis放出AGI时间表:还差一两个技术突破

它们并不是真的「理解」了这个世界,它们只是在预测下一个字出现的概率,因此缺乏对现实世界物理规律的认知,也没有像人类那样拥有一个连贯的、能够自我修正的思维模型。关键问题在于,他们是否能够在前沿之外实现原创性创新?当大模型的广博知识,遇上世界模型的物理认知,再加上智能体系统的行动能力,就可能补齐通往AGI的关键拼图,迎来AGI降临的时刻。

2026-01-19 17:23:47 84

转载 智源人工智能研究院与高瓴人工智能学院联合推出MemoBrain:为长程推理重建“执行记忆”的新一代智能体架构

MemoBrain 不会阻塞主代理的推理流程,它像一个后台线程,在推理进行的同时不断吸收新的推理片段,把它们转化为结构化的记忆单元,再根据需要对整个推理结构进行折叠、冲刷和重组。波动智能旨在建立一个基于人类意图与反应的真实需求洞察及满足的价值体系,融合人工智能与意识科学,构建覆盖情绪识别、建模与推荐的智能引擎,自主研发面向社交、电商等场景的多模态意图识别引擎、意图标签系统及意图智能推荐算法,形成从情绪采集、意图建模到商业转化的完整解决方案。记忆管理的可解释性与可控性,让人类能够理解智能体的“思维过程”。

2026-01-19 17:23:47 46

转载 下一场人工智能革命可能始于世界模型

电影的3D幻觉是通过立体成像技术实现的——通常快速交替投射两幅略有不同的图像,一幅对应左眼,一幅对应右眼。,“世界模型”更侧重于描述现实运作方式的内部模型,而不仅仅是4D重建。同时,在通往AGI的道路上,4D模型可以提供丰富的现实模拟环境,用于测试人工智能,确保当我们让它们在。在LinkedIn上宣布离开Meta,创办一家名为Advanced Machine Intelligence(AMI Labs)的初创公司,旨在构建“能够理解物理世界、拥有持久记忆、能够推理并能够规划复杂动作序列的系统”。

2026-01-18 18:05:16 56

转载 深度|诺奖得主Hinton:AI已能察觉自己是否在接受人类测试,并故意表现得温顺平庸

所以,我大脑中的连接强度对你完全没用,因为你的神经元与我的略有不同,它们的连接方式也略有不同。它们有很多、很多层,开始时词有一个初始含义,可能相当模糊,当它们穿过这些层级时,它们正在做的就是让这些意义变形,试图找出如何变形才能让所有词锁在一起,让某些词的手伸进其他词的手套。它大概率的意思是,她用平底锅砸了他的头,或者类似的动作。大脑运作的方式是它们学习脑细胞之间连接的强度,如果它们想解决某个复杂的问题,它们就会大量练习,在练习的过程中,它们学习这些连接的强度,直到它们变得擅长解决那个问题。

2026-01-18 18:05:16 95

转载 万物皆有处:Nature揭示大脑记忆的缝合术,AI离真正的智能还有多远?

因为我们不需要重新学习“背景”,只需要把新的“内容”插进现有的“背景”框架里。我可以随时把“林黛玉”的照片从《红楼梦》里取出来,放进《三体》的背景里,但我清楚地知道这只是在做“跨界重组”。因为它在底层逻辑上,没有建立起像人类那样独立且严密的“内容 vs 背景”隔离墙,导致它在提取信息时,经常把甲的背景嫁接到乙的内容上。当它提到“林黛玉”时,周围的背景像素是模糊且概率性的。你的大脑不仅记住了“老同学”这张脸,还记住了“咖啡馆”这个背景。研究发现存在第三群神经元,它们负责将特定的“内容”缝合进特定的“背景”。

2026-01-17 17:58:20 69

转载 自然·通讯:当环境“说谎”时,智能体如何做出可靠决策?

其提供的策略,不止适用于人工智能体,也可能被自然选择挑中用于生命应对异变且观测模糊的环境,理论细菌可以在未知环境中导航,这种对生存至关重要的能力可在几乎没有训练的情况下实现的。图2a为DR-FREE原理的数学表述,其优化的目标函数分为统计复杂性项与期望损失项,这样设计的目标函数,使之能够在无限维概率空间中进行贝叶斯最优的不确定性和模糊性处理。,求解引擎首先使用生成模型和损失函数,在所有模糊性集合中的可能环境上计算最大自由能,在获得模糊性成本后,引擎在策略空间中最小化变分自由能,产生最优策略和成本函数。

2026-01-17 17:58:20 40

转载 量子力学发现:“虚无”并不空无,而是一切的起点

彼得·米洛尼指出,真空中以某种方式“体现”了所有的场,也就意味着所有粒子的潜在存在。而在另一些诠释中,这种运动只是经典直觉的残留,人类并不存在一种直观方式来想象粒子在最低能量状态下究竟“在做什么”。从无法消除的零点能,到真空中潜伏的粒子属性,再到它与宇宙命运之间的张力,科学家一次次发现:我们以为的“什么都没有”,也许正是自然界最丰富、最难理解的状态。可以确定的一点是:如果将一组粒子置于最低能量状态,再去测量它们的位置或速度,你会观察到一系列分布,而不是一个固定值。更重要的是,它改变了人类对“虚无”的理解。

2026-01-16 19:19:41 56

转载 专访MIT刘子鸣丨另辟蹊径,不赌规模:Physics of AI 是通往 AGI 的“科学路径”

至于研究目标,短期的话,三年以内,我核心就是推进 Physics of AI 这条研究线,观察更多相关现象,也会把这些研究分享给社区,非常欢迎社区的人一起来加入我们的这项研究工作。这些小观察现在还是出于好奇心驱动,但最终,当我们积累了足够多的小观察,到了某个节点后,我们就能顿悟,明白这些小观察之间是怎么联系起来的。不过我觉得,随着我们做更多的玩具实验,比如测试一个玩具模型各个方面的性质,在不同层次上对它进行测量,通过测量不同的东西,或许就能观察到不同层次、不同观测量下展现出的各种现象。

2026-01-16 19:19:41 53

转载 神同步OpenAI!中国团队Deep Principle领衔发布LLMs for Science评测,引爆外网

从开拓扩散生成模型(Diffusion Models)在化学反应的生成,证明「不止要生成材料,更需要生成材料的合成路径」,到机器学习势(Machine Learning Potentials, MLPs)和扩散生成模型的直接对比,证明传统的机器学习势不是「万能」的,再到现在组织各大顶级学者和高校推出 SDE,证明传统一问一答的 Benchmark 不能带领我们走向科学超级智能,精准切入 AI for Science 领域的核心冲突。究竟什么样的 AI 模型可以胜任,拓宽人类的生存边界?

2026-01-16 19:19:41 82

转载 Science正刊:麻省理工学院Hugh Herr 教授成为仿生时代领导者!

他开始查阅大量的资料,甚至阅读之前绝不会涉及的学术类论文。研究者指出,高保真信号、骨性力传递以及幻肢-机械动作的实时映射,共同塑造了这种“假肢即自体”体验,为未来评估截肢手术设计和假肢选型提供了新的自我感知指标。Hugh Herr,1964年10月出生于美国宾夕法尼亚州的兰卡斯特,家里有5个孩子,他是最小的一个,自学习攀岩开始,就展现出了异于常人的天赋。

2026-01-15 18:23:26 32

转载 自然·物理:复杂系统的低秩假说

然而,低秩假设的使用应当非常谨慎:实际网络的有效秩通常在 N 的相当大的比例范围内,若不加留意地采用低秩假设,可能会导致对给定复杂系统的一种过于简化的模型。网络的奇异值并非仅仅是谱理论的抽象:就像度、聚类系数或互惠性一样,它们具有直观的解释,可作为复杂网络/系统的有效维度的指标。等领域有着新的有趣发展。SBM:随机块模型,CL:钟-卢模型,MD:元度模型,DSCM:有向软配置模型,RDPG:随机点积图,RGM:随机几何模型,RPG:秩扰动高斯模型,DCSBM:度校正随机块模型,缩写前的“W”表示“加权”。

2026-01-15 18:23:26 53

转载 人工智能基本上扼杀了 Stack Overflow

当然,有人可能会指出2022年的情况,说‘你看,这都是人工智能的错’,没错,人工智能确实加速了这种衰落,但这其实是持续惩罚用户参与社区活动的结果,”一位Reddit用户。自 2008 年以来,Stack Overflow 一直是开发者的极大帮助资源,让他们能够通过众包方式找到编码问题的答案,从而形成了一个庞大的在线编码知识库。,旨在“加强世界上最流行的大型语言模型”——这究竟是顺应不可避免的趋势,还是加速自身的消亡,取决于你的看法。指出的那样,使用生成式人工智能回答平台上的问题。

2026-01-15 18:23:26 56

转载 大模型长脑子了?研究发现LLM中层会自发模拟人脑进化

例如,在对 Gemma 3 4B 的热图分析中,中间层的注意力头之间表现出密集且强烈的协同交互,这正是模型进行高级语义集成和抽象推理的区域。研究人员通过分析 Pythia 1B 模型的训练过程发现,在随机初始化的网络中,这种「倒 U 型」的协同分布并不存在。它表明,我们可以从「自上而下」的信息论视角来理解模型,而不仅仅是「自下而上」地寻找特定的电路。

2026-01-15 18:23:26 65

转载 对谈:从动物群体行为到大脑空间决策,复杂性如何启发智能探索?

导语鸟群、蝗虫群、鱼群,在这些看似混乱的生物群体中,秩序奇迹般地涌现。不同物种的群体行为在细节上有所差异,但它们大致遵循物理学家们几个世纪以来总结出的集群运动规律。现在借助最新的技术,研究人员能够比以往更仔细地研究这些动物的行为模式。这篇文章是进化生态学家 Iain Couzin(艾恩·库津)与应用数学家 Steven Strogatz(斯蒂文·斯托加茨)的对话,他们讨论了动物群体行为以及背后的原因,集群作为一种生物计算形式,能够通过相互作用调整网络结构,让系统处于兼具灵活性与稳定性的临界状态。此外,动物的

2026-01-14 21:22:52 73

转载 Anthropic 工程师深度解读 Skills:AI Agent 的专业进化之路

Skills 系统,通过极简的文件格式,解决了 AI Agent 缺乏领域专业知识的核心痛点,并构建了一个开放、可组合、可进化的生态系统。最近刷屏Skills是什么,发布5周出现了数千个 Skills,他们有哪些类型,Skills为什么重新定义了 AI Agent 的开发方式,又有令人兴奋的应用场景?这种设计的好处是支持成千上万个 Skills ,上下文窗口消耗始终可控,不需要的 Skills 不占用空间 ,可以动态组合多个 Skills ,支持复杂的工作流编排。这些认知是理解 Skills 设计的基础。

2026-01-14 21:22:52 155

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除