来源:IDG资本
#i-Refill
欢迎回到本周的i-Refill!
我们知道,黎曼猜想是当代数学领域内最重要的待解决问题之一,很多深入和重要的数学及物理结果都将在它成立的大前提下得到证明。
10月中,我们围绕数学家张益唐承认已攻克黎曼猜想的弱形式:朗道-西格尔零点猜想(Landau-Siegel Zeros Conjecture)做了相关推送(点击这里回顾😄),也在文中提到相关论文将在11月发表。
终于,在11月5日,张益唐教授题为《离散平均数估计和朗道-西格尔零点》(Discrete mean estimates and the Landau-Siegel zero)的论文在预印本网站arXiv公开发布(论文正文共18个小节,111页,同时公布了两个定理)。
我们找来了论文原文下载链接,感兴趣的朋友可以深入阅读👇:
https://arxiv.org/abs/2211.02515
昨天(11月8日)上午,张益唐教授在北京大学数学科学学院作了同题学术报告。走进今天的推送,了解黎曼猜想这座不倒的山峰如何被攻克,以及数学家们如何坚韧地、长久地做难而正确的事。
希望为有创业想法或正在创业的朋友带来启发。
昨天,张益唐教授现身北大,在B站直播平台给广大网友带来了一堂大师级数学课,对自己证实朗道-西格尔零点猜想问题的论文做了全面解析。全程40分钟,无废话无尿点,硬核知识拉满,信息密度极大——最感人的是,为了顾及所有听众,讲解全程没有太过于艰深难懂的叙述,世界级数学难题被张益唐教授用深入浅出的方式娓娓道来。
B站直播回顾链接:
https://www.bilibili.com/video/BV1oP411F7a5/?spm_id_from=333.337.search-card.all.click&vd_source=39d48b9b078dcbcde512d24f9e076966
在证实朗道-西格尔零点猜想前,张益唐教授曾因证明孪生素数猜想而引发轰动。当时他认为自己的证实过程如同大海捞针,而在这次报告中,他深入介绍了作为“被闪电击中两次的人”究竟是如何“大海捞针”的。
虽未实现大海捞针
但摸透了整个海底的情况
朗道-西格尔零点猜想是广义黎曼猜想的一个特殊形式。简单来说:数学家们想要证明,狄利克雷的L函数并不存在一个非常接近1的零点(即朗道-西格尔零点)。在朗道-西格尔零点猜想中,L函数的实零点与1的距离应为:
面对这个问题,一开始,张益唐教授首先构造一个实数序列 {xn},如果存在朗道-西格尔零点,就推出xn≥0,只要证明有xn<0,朗道-西格尔零点就是不存在的。而根据塞尔伯格筛法,这个问题就变成了,要找到一组实数序列 {ξn},使得:
张益唐教授形容:“找ξn就是一个大海捞针的过程。但直到把海底的情况都摸清楚了,也没找出这根针来”。不过他发现,即使没有这根“针”,他也能解决这个问题:
新想法被他归结为一个非常基础的式子:ac-bd=(a+b)c-(c+d)b。展开来说,就是引入了两组序列 {an+bn} 和 {cn+dn}。他证明,xn与 (an+bn)^2的乘积之和非常接近0,第二组序列同理。这时,假定xn≥0,基于 ac-bd=(a+b)c-(c+d)b,就可以推出以下结果:
接着根据柯西不等式,估计左右两边式子的上界,就会发现,这个不等式的左边比右边大,是不成立的。这样,张益唐就得到了3个命题,最后通过证明3个命题,得到实零点与1之间的距离应小于:
以上只是简要介绍,这部分更具体的细节在论文的第二节,感兴趣的朋友可以自行深入研究。
改进沿用70年的数论方法
不断向更精确结果迈进
很多人关心:此次研究成果究竟能用在什么地方?
张益唐教授表示,此次成果比孪生素数猜想的意义更大:“朗道-西格尔零点猜想有点像黎曼猜想那样,它一解决,一百个猜想都变成定理了。”
换句话说,张益唐教授此次得出的结果远超出之前在朗道-西格尔零点问题上的所有结果,如果被数学界确认为是正确的,将在诸多数论问题上有重大应用。
这次的学术报告把话题更深入到对数论的影响,正如引言中提到的,对于很多数论问题而言,黎曼猜想和朗道-西格尔零点是一个瓶颈,而跨越过这个瓶颈,就会有很多应用出来。比如:“素数在等差级数中的分布”是一个长期悬而未决的问题,如果朗道西格尔零点存在,就代表某些等差级数里素数会特多,某些里会很少。
除了研究结论之外,张益唐这次用到的方法同样意义重大。1950年前后,阿特勒·塞尔伯格(Atle Selberg)提出塞尔伯格筛法,成为数论研究中的重要工具并沿用至今。
在很长一段时间里,该方法都是“初步估计在一个小区间里素数分布之上界”的唯一方法,曾使哥德巴赫猜想前进一大步,张益唐教授解决孪生素数猜想的思路也受其启发。通过不断地“大海捞针”,虽然张益唐教授没有捞到塞尔伯格筛法中的那根“针”,但终于是设计出了新的方法:不依赖于“求二次型极值”,除了用于朗道-西格尔零点猜想外,还有望用于其他数论问题。
张益唐教授正在思考能不能用新方法改进之前的孪生素数猜想结果。在他的孪生素数猜想论文中证明了“存在无穷多间距小于七千万的相邻素数对”——七千万这个数字,后来在全世界数学家合作的Polymath Project 8项目努力下已经缩小到了246,而使用新方法后,这个间距有望继续朝着最终目标2前进。
当然,这也意味着朗道-西格尔零点猜想的结果是可以改进的。
目前,张益唐教授的新论文还未经过同行评议,有待学术界验证其结论。而一旦论文被承认是正确的,可以预见的是接下来数学界也会在他的工作基础上不断向更精确的方向进发。
67岁仍在持续探索
数论领域里没有不可能
著名数学家哈代曾提到:“从不知道有哪个数学上的重大突破是由一个超过50岁的人提出来的。”人们一般认为数学天才是青少年时就要出成果,学界最著名的菲尔兹奖是发给40岁以下的青年学者,而张益唐教授在做出第一份重大数学贡献论文时已经60岁,打破了这个常规。
长久以来,张益唐教授始终潜心进行着他“谁也看不懂的”数学研究,几乎把自己与世隔绝,他的妹妹甚至需要在网上发寻人启事寻找哥哥。当时在美国当教授的老同学给他妹妹回了邮件,表示他哥哥健康地活着,在钻研数学呢:)。
因为对完整、完美的学术理论的执着,张益唐教授和众多科学家一样可以忍受、甚至享受长久的孤独与坚持,孤身一人在数学海洋里的摸索、触礁、迷茫。
有人询问他如何在大海捞针的过程中取得突破性进展,他谈到:“我已经完全把它吃透了,就是做到极致吧。” 他认为:
做学问要有一种匠人精神,就像有一个钟表匠,要把一件事做到极致。8年前,因为梅纳德(James Maynard,牛津大学的青年数学家,优化了张益唐的孪生素数成果)把我的成果改进了一大堆以后,我不服气,一定要去做。
那段时间我就是一个钟表匠,一步一步,就是坚定地做。别人可能都已经做过了,但把它做到极致还是个问题。我觉得我把它做到极致了,在这个基础上我才能发现新的东西。
在此次直播问答环节中,张益唐教授提到:“孪生素数猜想出来之后,有人说我是大海捞针。但实际上不太对,孪生素数我没有去捞什么针。但是去突破这个理论,我找了很多很多东西,但都有一个问题,最后一步你就是跨不过去。那最后是怎么去解决的呢?我已经用了这么多年去大海捞针,可以说我没捞到。但是,在这个过程中间,我把海底的地貌给弄清楚了。最后发现,我不需要这根针也可以达到这里。”
和许多创业者一样,在创业初期曾经抱着无限的勇气和赤诚。在张益唐教授从北大毕业,前往普度大学攻读数学博士时,他选择以十分艰难的“雅各比猜想”作为毕业论文主题。他的博导莫宗坚教授回忆说,并没有因为题目难而组织他,因为:“我明白如果他是探险家,他就会去世界的尽头;如果他是登山客,他就要登上珠穆朗玛峰,风雨雷电都无法阻止他。”
当然,创业和钻研数学的过程,也并不总都一帆风顺,失败是比成功更常见的朋友。
在一次回到北大进行演讲的过程中,张益唐教授用平淡的口吻分享到:
我经常觉得自己做的程度很差——这是真的,但我并不失落,只是实实在在地去做。中间经历了很多挫折,每次我都坚持下来。如果别人问我有什么成功的秘诀,我只能说句大实话:我就这么实实在在地去做,而且坚持着。我过去是这样,将来也会是这样。
而在无数个需要做出抉择的十字路口,张益唐教授曾谈到:“更重要的是问你自己。你学的知识到底有什么意义,能用在什么地方。多问这个问题,学问才能做得扎实。研究数学要往深了钻,不知道怎么往前走的时候,最好能停一下,回到出发点,问一下自己想做什么。”
在长时间内,独自一人心无旁骛地坚持做一件正确而困难的事,是张益唐教授的日常,也是很多创业者的经历——在时刻与不确定性共存的每一天,在被各种情况挑战的情况下,仍需要整理心情、继续坚持。
期待张益唐教授此次得出的结果被数学界证实,期待更多数论问题因此而取得重大突破。
张益唐教授坚信,在数论领域,没有什么东西是不可能的,这也是他数十年如一日,坚持做正确而艰难的事的完美注脚。与各位对世界充满好奇心和求知欲的创业者们共勉,期待我们在更多领域,打破更多“不可能”,共同创造更大的社会价值。
参考链接:
[1]https://news.ycombinator.com/item?id=33512338
[2]https://weibo.com/1277439255/Me402b5zI
[3]https://mp.weixin.qq.com/s/MIztT_oTB8taIHRoobAoDA
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”