【数学与物理学】文小刚:数学引领的凝聚态物理新理论

d5d0ac6e2928cf27c76255d03b1c1f00.jpeg

来源:陈方的发现数学之旅

文小刚是著名物理学家,美国国家科学院院士,麻省理工学院终身教授、格林讲席教授。主要研究方向为: 凝聚态物理学。2002年当选美国物理学会会士;2017年获得美国物理学会颁发的巴克奖。

1977年文小刚考入中国科学技术大学物理系,1981年以全国第一名的成绩通过 CUSPEA(中美联合培养物理类研究生计划)招生考试,之后到美国普林斯顿大学深造, 1987年获得普林斯顿大学博士学位。

1 . “它好玩,它的数学漂亮”

文小刚在其著名演讲《创新就是孩子的游戏》中,较详细的介绍了他的凝聚态物理学新理论的发现过程。

文小刚介绍说:“1987年我研究生毕业以后,从超弦转向凝聚态物理。当时一个凝聚态物理大家,又同情又怜惜地跟我说: 现在转到凝聚态物理,已经没有什么好做的了。那时我懵懵懂懂,也没往心里去。转方向后,我一开始对高温超导中的量子自旋液体很感兴趣,因为觉得它好玩,又因为觉得它的数学漂亮,有挑战性,还和标准凝聚态物理的思路非常不同。”

2 . 发现“拓扑相”(拓扑序)

1989年文小刚意识到,不同的手征自旋液体相可以具有完全相目的对称性, 也就是说这些不同的全不能用朗道的对称性破缺理论来区分描写。后来看到的量子霍尔相也完全不能用朗道的对称性破缺理论来描写。这些都是全新的以前没见过的物质相。文小刚把这一类新的物质相叫做拓扑相(又叫拓扑物态)。把一个物质态放到有不同拓扑联通的空间中,可以让探测物质态中的拓扑序。拓扑物态作为一个新刻画: 因为物质态放到有不同拓扑连通的空间中,利用物质态的基态简并度和空间拓扑的关系,来描写物质态中的拓扑序。可这一全新的刻画,一开始并不被认同。

3 . 拓扑序: 高阶范畴学

十年以后,量子信息成为一个非常兴旺的领域,并开始影响到凝聚态物理。这时文小刚发现拓扑物态中的拓扑序,原来就是量子纠缠的不同构形。他回忆说“我记得在2002年意识到这一点时,我脑子里突然有一种清楚。对我来说这是从不知道的不知道,到知道的不知道的一次转折,使我对拓扑序的理解,更加升高了一个层次。这以前我虽然起了"拓扑序"这个名字,但我并不真正知道拓扑序是个什么东西。”

后来文小刚意识到,拓扑序等于多体量子纠缠的构形。这一理解导致了拓扑序的高阶范畴学理论。高阶范畴学是一个大多数数学家都不问津的纯数学理论,而且也是一个正在发展的理论。为了系统地描写凝聚态物理中的拓扑序,必须进一步发展数学中的高阶范畴理论。文小刚认为:物理前沿和数学前沿如此密切地接触,是牛顿以来的第一次。

4  . 相互作用、信息和物质:“超大统一理论”

如果空间是一个带有弦网纠缠结构的量子比特海(一个新型的量子以太),这就可以解释所有基本粒子的起源。这代表了一个信息和物质的统一。构成空间的量子比特海,也是一个具有拓扑序的拓扑物态。拓扑序和其对应的量子纠缠,是光子、电子以及其它一切基本粒子的起源。这在数学上已被证明是可能的。目前标准的大统一理论仅仅统一了三种相互作用。拓扑物态是一个把相互作用、信息和物质都统一起来的超大统一理论。拓扑物态已成为凝聚态物理最活跃的前沿之一。

最后,文小刚充满信心地指出:“人们在寻找各种各样的材料来实现各种不同的拓扑序。如果我们找到一种材料,它能实现空间量子比特海中的弦网拓扑序,那么这个材料就能模拟所有的基本粒子。手里攥着这种材料,我们就可以宣称我们掌握了世界。”

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

6b4d7b2bb1dbbc48054365448ca0215e.jpeg

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值