生物人工智能——从具身认知到具身机器人学

a9596beddd9e46deae5bcf3a8d50f7cd.jpeg

来源:CreateAMind

Editorial: Bio A.I. - from embodied cognition to enactive robotics

社论:生物人工智能——从具身认知到具身机器人学

https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2023.1301993/full

关键词:动力系统、电子认知、具体化、生成主义、主动学习、表示、机器人、通用人工智能

摘要和评论

强烈鼓励感兴趣的读者查阅原文。

在“在主动推理下习得文化模式化注意风格”一文中,Constant等人展示了基于主动推理的视觉觅食模拟,演示了根据驱动感知、行动和学习的文化工艺品而形成的注意风格的习得。这篇论文引人注目地展示了物质文化如何既推动又受到人类思想的驱动,以及如何通过对注意力模式的构建和重建来塑造。 

在“实施植物启发的机器人技术”中,Lee和Calvo建议将植物作为软机器人的整体灵感源,因为植物具有非集中式的模块化架构和高度可塑的表型.与基于系统在观察窗口上的独立可操作性的自主性概念相反,植物和其他生物在需要支持自我生产动态以创建它们与“维持系统可行性条件的相互作用域”之间的区别方面表现出更强的自主功能.他们进一步建议,如果这些系统在自我保护的目的上更积极地获取物质和能量来源,那么“growbots”领域可能会取得进展。

在“参与的划分:为人工智能进行意义建构和社会形态塑造”中,Zebrowski和McGraw认为,要正确理解社会认知,需要更加欣赏涉及参与式意义建构(PSM)的相互作用的性质。提出了“社会形态塑造”作为区分生命意义建构者和人工系统的手段,这可能允许逐渐将人工智能融入涉及最初不对称社交程度的背景中。建议PSM和社会形态塑造不仅为社交机器人提供了基础,还为开发具有广义智能的越来越先进的人工智能提供了潜在的健壮框架。

在“具身物体表示学习和识别”中,Van de Maele等人展示了如何通过考虑生物体代理如何通过利用与世界的积极互动来实现场景理解,从而为自适应物体操作和导航能力提供机器人技术的指导。受到神经科学理论的启发,在这些理论中,新皮质柱在面对新情境时建立了关于对象的预测模型,这些模型在客观参考框架内。作者引入了一个皮质柱网络(CCN)架构。在CCN中,通过学习在给定动作情况下像素空间中期望/预测变换的生成模型,每个对象类别在其自己的参考框架中表示。CCN合奏对候选物体类别的相应信念进行投票,当分类可能性过低时,会导致新的CCN的创建。这种架构在模拟环境中进一步得到验证,随着代理收集更多证据(通过自监督主动学习)并以有利于达到首选观察/目的地的方式选择行动,分类得到改善。

在“具身认知机器人中的背景上下文”中,Valenzo等人描述了如何通过为系统提供整合与代理相关的、环境的和任务相关的信息的“全局上下文”,来增强自主机器的行为灵活性。通过这些核心要素的相互作用,代理能够(1)基于当前和预期的未来需求(学习和掌握相关性)选择与自身相关的任务,(2)执行具有持续性能监控的任务,和(3)根据定位行动周期中的总体预测错误放弃不成功的任务。关于预测错误监测,减少速率被视为总体性能成功的指标,引发情绪,既作为自主行为的推动因素,也受到全局上下文处理核心要素相互作用的影响。

在“意义问题:自由能原则和人工代理”中,Kiverstein等人描述了生物体如何通过以表达对上下文相关相关性的敏感性的方式行动来解决“意义问题”。作者借鉴了心智生命连续性和具身认知科学的共同原则,提出鲁棒的自主代理需要稳定、自我维持的感觉运动相互作用模式,以使其在遇到不同(及不同)有意义的环境时对价值观、规范和目标进行基础。作者进一步讨论了具身主义和FEP之间的关系,包括这些观点在根本上是不相容的这一挑战,生物系统表现出历史依赖学习,而自由能最小化代理则切断了这种历史性。这样的FEP代理还表现出具身主义关于自主性的描述中缺乏的“互动的不对称性”。除了解决这些挑战外,还建议与其说是根本的不相容,不如说FEP需要具身主义来解决意义问题,而具身主义需要FEP来精确形式建模实现代理所需的必要组成因素。

在“避免灾难:主动树突支持动态环境下的多任务学习”中,Iyer等人介绍了一种神经网络架构,以增强具身系统在动态环境中的操作,同时灵活适应不断变化的任务背景并在没有灾难性遗忘/干扰的情况下进行持续学习。这是通过引入活动性树突和促进稀疏的局部抑制系统来实现的,从而以特定于上下文的方式动态约束和路由信息。该架构在多个基准测试中进行了测试,包括一个多任务强化学习环境,其中代理必须解决各种操纵任务(类似元学习),以及一个持续学习设置,其中任务预测在培训过程中发生变化(类似逆转学习)。在两个模拟中,该架构开发了重叠但独特的稀疏子网络,通过最小化遗忘,促使对多个任务的流畅适应,首次展示了在多任务和持续学习方面的高性能演示。

在“Social neuroAI: social interaction as the “dark matter” ofAI”中,Bolotta和Dumas引入了一个在FEP-AI的启发下为生物启发的AI中的社交学习提供框架的三轴:(1)认知体系结构的大脑启发模型,如全局工作空间和注意模式理论,这些理论桥接了个体和社会智能;(2)处理认知本质上依赖于时间的动态系统的观点;(3)作为复杂交流信号源的具身。这些社交互动是先进认知能力的基本组成部分,但在AI中仍然被较少探讨,构成了试图理解类似于人的智能的“暗物质”。鉴于我们对这一理解的空白,作者回顾了社交学习在认知发展中的作用和“社交神经AI”新兴领域。

在“以目标为导向的具有基于习惯的自适应感觉运动映射网络的行为”中,Woolford和Egbert提出了一种基于习惯的机器人控制器模型,借鉴了具身主义原则,通过自适应感觉运动映射(ASM)网络架构来实现代理。ASM网络提供了结合以下方面的实验调查平台:(1)生成历史轨迹的连续运动活动的机制;(2)评估机制,根据它们对更高阶感觉运动协调结构的支持强化或削弱这些轨迹。作者将这些自适应网络部署在涉及对象辨别的最小认知任务中,演示了个体机器人如何通过探索/随机运动和重复成功的感觉运动协调历史轨迹(类似运动婴儿语)的组合来学习。这些机器人展示了在没有明确的表示机制或外部适应度变量的情况下学习的能力,而是根据行动生成机制本身的内部要求进行调整。

在“具身智能:学习智能决策代理认知架构中的平稳应对”中,Kronsted等人描述了熟练的行为如何通过经验而变得习惯和根深蒂固,从而相对于经过深思熟虑的思考和行动(例如行走、驾驶、滑雪、演奏音乐、即兴烹饪)减轻了认知负荷的压力。平稳应对行为似乎是自动化的,因为它们迅速而缺乏反思,与Hurbert Dreyfus对海德格尔现象学的描述相符,涉及对行动的“无意识”吸收并处于一种流动状态。然而,约翰·杜威等实用主义者认为,平稳应对中内置了智能的灵活性,使其与自动化有所不同。作者使用学习智能决策代理(LIDA)系统详细描述了平稳应对的概念模型,该系统基于意识的全球工作空间理论,并认为自动化的行动序列会间歇性地与通过有意识介导的行动选择(通过背侧流程)进行的熟练和灵活的调整交替出现。在LIDA中引入了一个自动化的行动选择子模块,以在混合体系结构中演示这些原则,该混合体系结构允许在具身主义耦合和显式表示之间实现协同,以更熟练地有意识地控制行为。

在“定位的神经表示:解决内容问题”中,Piccinini认为基于具身、嵌入、实践和情感的心灵定位方法(扩展对他们的讨论不相关)与神经表示深深地交织在一起,这种计算方法在其核心“[需要]在其核心具有具身性、嵌入性、实践性和情感性。”此外,建议需要定位来描述计算的自适应形状,以(1)构造具有原始语义内容的表示,(2)自动协调神经载体与表示内容,(3)允许内容具有因果有效性,(4)允许内容足够明确以对系统有意义/有用,(5)允许对远程刺激的表示,以及(6)允许误导的可能性。

在“一种受到启发的数学认知模型”中,Weinstein等人概述了一种符合具身主义的数学框架,用于自然和人工认知系统,这些系统不将有内容的符号表示归因于代理,而是将神经系统、身体和环境建模为“更大整体的不可分割的部分”。感觉运动系统被认为是(可能带标签的)“转换系统”的特例,与确定性自动机存在连接。还建议了“充分性”属性的最小要求,包括生物对其环境的最佳调谐以及具有足够历史信息空间的属性。

在《利用使能机器人超越问题解决范式:感觉运动相关性如何限制新型自主习惯的形成》中,Egbert和Barandiaran建议AI应该从“生命系统的不稳定、自我维持的组织”中汲取灵感。他们演示了由迭代的可变形感觉运动媒介控制的机器人如何实现有组织的习惯生态的自发出现,这些习惯能够重新演绎自适应行为,形成的习惯在模态内部具有相对更大的相似性,类似于生物系统的观察结果。这些发现进一步讨论了它们与感觉运动相关性理论、生物学中的适应主义和结构主义解释以及AI中功能主义问题解决方法的潜在局限性的相关性。

在《基线差分外源可塑性(DEP)控制的达到空间分析》中,Birrell等人介绍了在产生具有环境意识行为的无目标模拟代理的背景下研究的一种学习规则。他们进一步将这一机制扩展到有意识行为,以确定“短路DEP”是否能够通过简单的开环控制在机器人手臂中生成期望的轨迹,实验涉及目标达到和圆周运动,探讨了瞬时和极限周期动力学。

在《谐振作为AI和社交机器人的设计策略》中,Lomas等人探讨了谐振物理机制与人类经验之间的关系,考虑在人机交互中增强那些(潜在的高度影响力的)体验的可能性。作者讨论了谐振作为一种文化和科学隐喻,并审查了“共振”作为一种物理机制(包括同步和节奏协调)和“设计策略”来塑造人类与非人类系统之间的互动。

在《跨尺度的自我关切:以生物启发的AI为方向》中,Sims专注于为所有生物系统建立一种反映持续生存任务的智能基础。引入“自我关切”作为“一个复杂系统的特性,描述其促使产生与其持续自我维护相容的状态的倾向”,并提出这可能是在人工系统中复制类似于人类智能的力量和原则的潜在手段。

在《留意物质:活性物质、软机器人和仿生人工智能的制造》中,Harrison等人主张存在认知现象(如记忆、学习、目标导向和决策)可实现性的限制。也就是说,作者描述认知与其物质性和实体性深深交织在一起,并暗示在AI领域取得进展可能需要将潜在的物质、生命过程视为不仅仅是可以抽象而不考虑特定机械实现的“硬件”。简而言之,“物质对认知形式和功能至关重要。”通过“多重实现 2.0”,物质性使认知得以实现、调解和限制,存在的不稳定条件对于理解自主系统如何以生存、持续和繁殖的存在需求为基础进行目标导向的方式至关重要。

在《夺回显著性:节奏精度调制的行动和感知》中,Anil Meera等人表征了视觉注意力和显著性的性质,以及基于当前视觉信息和估计原因之间的互信息的标准解释如何未考虑链接感知和行动(包括在哪里采样下一个位置的决定,鉴于当前信念)。从这个角度来看,显著性被定义为一种主动的推理过程,依赖于不确定性最小化和节奏调度的基本原则以及注意力:精度控制,或者信念在给定采样感觉数据的情况下可以更新的置信度。换句话说,显著性与不确定性最小化相关,支持未来感觉数据的选择,而注意力与节奏精度调制相关。通过数值实验展示了在状态和噪声估计、系统识别和行动选择方面的优势,以及对于信息路径规划的信息。

在《具身使非预测性的应对自引起的感觉刺激成为可能》中,Garner和Egbert演示了自引起的感觉刺激的感觉减弱可以通过使能方式解释。这与基于运动副本的这些现象的经典解释形成对比,其中运动命令伴随着预测该活动可能感觉结果的信号的副本,然后这些副本从实际的感觉输入中减去。在这项工作中,遗传算法被用于研究何时非预测性解决方案可能是可行的,测试的简单系统涉及修改纸张以形成或避免自引起的感觉输入(而不是预测和过滤它们),有时利用这些自引起的输入以实现更好的控制,所有这些都无需明确的内部模型。

在“Am I (Deep) Blue?音乐制作AI与情感意识”中,Novelli和Proksch回顾了AI在创造性和情感艺术努力方面的应用,重点关注音乐创作。作者指出,根植于当前人工智能系统的系统存在局限性,缺乏与音乐感知和制作的情感组成相关的“彻底具体化的、内感过程”。作者的综述提出了尝试将现代生成模型的强大能力与更类似人类的情感/内感处理相结合的方法。

在“将自由能原理与量子认知联系起来”中,Gunji等人概述了FEP-AI与量子认知之间潜在的冲突。尽管自由能最小化导致经典逻辑命题的布尔格子,量子认知导致量子逻辑命题的正模格子。过量的贝叶斯推理被引入,通过粗糙集格技术,将二元关系从联合概率的分布转化为格。

在“人类的小步:建模联合主动推理通信中累积文化的出现”中,Kastel等人提供了社会行为的引人注目且可测试的深度主动推理公式和累积文化的模拟。文化传播被构造为一种双向的沟通过程,通过广义同步在对话者的信念状态之间引起特定的收敛。社会/文化交流进一步被构造为主动推理的过程,为代理提供选择与哪些人作为沟通伙伴互动的选择,从而在当前信仰的确认和对社会环境的探索之间引起权衡。累积文化从信仰更新的动态中出现,平衡体现为通过选择性、最小化不确定性的二元交流而维持的信仰系统的分离。最后,这些新出现的均衡的性质关键取决于每个个体的生成模型对其文化化领域的精确加权。

结论

在这些贡献中,我们可以看到关于系统何为生物启发的观点有着广泛的范围,其中许多在机器学习中仍然被忽视。例如,人们越来越关注通过“多模态性”和潜在的模拟环境基础上的接地来增强大型语言模型(Driess等,2023; Yin等,2023)。然而,试图采纳启发性洞见的方法很少见,通常情况下都假设通过足够的扩展就能够依赖实现新的新兴能力(Silver等,2021)。这与发展社交机器人等领域的情况形成对比,后者强调启动(和接地)对系统进行“把握”有机体与环境之间有意义互动的健壮和灵活生成模型的条件(Dreyfus,2007; Tani,2016; Kolchinsky和Wolpert,2018; Linson等,2018; Bisk等,2020; Safron,20211; Hipólito等,2023)。

从一个根本上具有实体性的观点来看,有人可能会认为认知主义深度学习的整个领域基础不稳固,因为它不必要地诉诸于心智-机器隐喻的字面意义,即将心智视为字面上的信息处理器(van Gelder,1990; Van Gelder,1995; Hutto和Hipólito,2021; Beckmann等,2023)。在他们看来,由于计算和信息过程在人类(科学)实践之外无法找到,隐喻的字面意义推向了对自然智能的一种基本看法(即使在某些情况下在操作上是有用的)。然而,我们认为如果放宽一些伴随这些更认知主义观念的通常假设,可能需要采用更加普遍的方法,这可能在更具实体性的术语中重新表示时会更为强大(和灵活)。例如,人们可以考虑采用各种科学表征来理解生物智能,而不一定要认可所表示目标包含模型的本体属性(Candadai和Izquierdo,2020; Constant等,2020)。这些表征/建模样式的模型包括(但不限于)以下几种:

1. 通过分布式吸引子动态在执行-感知循环的可能模式上隐式“表示”,通过信息在环境中的扩展意义上不断地与环境共享/卸载(Clark和Chalmers,1998; Pfeifer和Bongard,2006; Heylighen,2016)。

2. 在共享的潜在工作空间中部分解耦特征(Bengio,2017; Thomas等,2017, 2018)—可能集中在posteromedial和侧顶叶皮质(Safron,2021a)—可能可描述为在神经元活动演变的减维流形上的。

3. 通过基底结构对不同系统-世界状态的可能稳态后果进行预测建模,将所有认知基于成功的生活管理和繁殖的前提条件(Damasio,2012; Safron,2021b; Solms,2021),从而将个体与形态发生(元-)学习相联系(Campbell,2016; Ramstead等,2018; Botvinick等,2019; Safron,2019; Wang,2021)。

4. 通过值导向的纹状核-皮质环路对这些系统-世界估计进行预测建模(从而进行控制)可以理解为将这些感知/概念与执行的可能模式相关联。在层次较低的级别,这些可能采用前向模型的柔性组装的联合形式(参见,摊销和规划作为推理)(Botvinick和Toussaint,2012; Kaplan和Friston,2018)。在抽象的中间级别,这些可能采用可经验的体现模式和通过相关affordances结构化感知的形式(Cisek,2007)。在较高的层次上,这些可能采用(不直接可体验的)经常性活动模式的形式(或reservoirs),其分叉/张量能够灵活地参数化执行的可能模式,并具有评估多个策略的能力(Tani,2016)。

5. 在海马/前马系统的时空轨迹中对这些特征进行重新表征,从而通过时间-空间的可能状态转换为整体代理系统的大规模动态进行协调(Blouw等,2016; Whittington等,2020; George等,2021; Safron等,2021; Bengio等,2022; Dumont等,2023),从而可能提供与“古老的AI”和符号认知科学相关的某些图形表示形式。

6. 本地对象模型(Kosiorek等,2019; Van de Maele等),这与将皮层柱视为变压器类型或Numenta的“1000 brains理论”(Hawkins,2021)的表征一致。虽然值得质疑每个皮层柱是否都具有完全的客观对象建模能力(Safron等,2021),但对于能够在形成时段内在时间尺度上通知和相互通知执行-感知循环的足够程度的本地“模块”而言,这可能是适用的(例如,触须桶,但不是眼睛优势列)。这是一个看似认知主义的心理现象模型涉及“表示”的例子,这可能在准确描述操作的具体细节方面严重依赖对实体主义原则的理解。

7. 通过符号/语言能力对这些特征进行重新表征(它们本身是对部分表达的运动序列/语法的可能模式的实现),从而允许认知按照语法语言的组合性来结构化/稳定/扩展,其“无限使用有限手段”。通过提供多层递归自我引用的自我建模,另一组包含奇异循环(Hofstadter,2007)的虚拟机器被放置在“认知”层次的顶部,从而扩展“认知光锥”确实“比天空宽。”—有关初步讨论,请参见 Friston 等人(2023)。

在这非详尽的方法论列表中,可能存在一种包容性、潜在协同且在科学上有价值的中间立场,能够弥合对心智理解的看似不相容的理论。这一努力在本系列文章中有所体现,涉及对形态计算的核心性和强大作用的讨论,以及对生物启发的神经结构潜力的展示。在这非详尽的方法论列表中,可能存在一种包容性、潜在协同且在科学上有价值的中间立场,能够弥合对心智理解的看似不相容的理论。这一努力在本系列文章中有所体现,涉及对形态计算的核心性和强大作用的讨论,以及对生物启发的神经结构潜力的展示。

值得注意的是,这种更加包容的立场仍然需要批判性思考,因为我们也要警告不要假设向系统添加看似生物学特征就必然会提高其智能/适应功能。在AI/ML领域,尤其是在试图基于能力随计算的明显“定律”和关于人脑作为“神经网络”的类比结合的未来性能提升趋势方面,这种警告可能尤为及时。当然,大脑确实是神经网络的一种类型,但它们还具有多个异构子系统,这些子系统共同构建了嵌入在环境中追求有价值目标的具有控制架构的具体代理体系,通常是在智能结构的社交情感学习课程的背景下发展(或训练)的(Tomasello, 2014; Veissière et al., 2019; Safron, 20211)。因此,试图将认知的复杂性简化为“主算法”的尝试可能注定失败。

此外,大量智能功能可能通过由智能设计的身体计划及其物理反应性倾向所启用的形态“计算”来实现。实际上,这种将计算挑战“卸载”到(或进入)身体和环境中,正是我们从预测处理系统中期望的,因为它们试图以最大效率实现适应性功能。通过更接近主要模态的动态来“解释掉”预测误差,所需的神经事务比利用更复杂的模型更少,但如果预测误差从一开始就因为通过(主动)推理(enactive inference)而被消除,进入神经系统的交易成本(最小化控制论熵)将更大(Ramstead et al.,

2019)。我们认为,受启发于使认知科学具备enactivism特质的元先验/超假设最为有成效的可能是,当试图理解生物智能的来源时,应从观察行为和认知如何从系统与其环境的上下文敏感互动中出现的角度入手。

我们很荣幸有机会汇集这个关于躯体和环境相互作用如何为认知提供基础的多样方式的系列文章,跨足多个尺度。虽然系统必须以何种方式具体体现才能实现怎样程度(和种类)的智能仍可能存在争议,但我们甚至敢于得出这样的结论:没有身体,就没有思维。或者用伟大的已故诗人玛丽·奥利弗(Mary Oliver)的话说:“精神喜欢这样打扮:十个手指,十个脚趾,肩膀,以及所有其他的... 它可以漂浮,当然,但它更愿意探究粗糙的物质。空灵而无形的东西,它需要身体的比喻... 它需要身体的世界... 被理解,变得不再是纯粹的光,燃烧在无人之处-所以它进入我们... 照亮身体深处而奇妙的沉溺,犹如一颗星星”(Oliver,1986)。

原文链接:

https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2023.1301993/full

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

b183e1409cb106eaebf2cf3a2888f8ed.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

56e7165c45efe04dee4a8d038658c0d8.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值