微软力推新视频游戏 AI 模型,超 10 亿张画面训练、相当于 7 年老玩家

图片

来源:AI前线

整理:华卫、核子可乐

日前,微软在 Nature 杂志上发表了一项游戏生成式 AI 的突破性研究成果,其中介绍了其名为 “Muse”的世界和人类行为模型 (WHAM),可以生成游戏视觉效果及对应玩家操作的反应。在微软公告中概述的各项 Muse 用例当中,最有趣的当数游戏现代化机制——Muse 能够对经典游戏目录中的庞大作品储备进行研究,并针对现代硬件进行优化,展示出包括有机会通过新设备和新方式让未来一代的玩家玩到老游戏、增强创作者和玩家的能力、开创新可能性的潜力,目前他们正在 Copilot Labs 上提供简短的人工智能互动游戏体验。

然而,这一被称为“突破性”的技术进展,似乎却并不受游戏开发者和各大社区的青睐,许多人留言称“没人想要这个。”资深游戏开发者、开发工作室 The Outsiders 的创始人 David Goldfarb 甚至对其评价:“去他的这狗屎!”

image

Xbox 力推新游戏生成式 AI

据介绍,作为视频游戏人工智能生成模型,Muse 是同类中第一个在 Ninja Theory 的多人战斗竞技场游戏 Bleeding Edge 上训练的生成式 AI 模型,由 Microsoft Research 与总部同样位于英国剑桥的 Xbox Game Studios 的 Ninja Theory 合作开发。

image

Muse 的突破性之处在于它对 3D 游戏世界的全面了解,包括游戏物理学以及游戏对玩家控制器作的反应。这使该模型能够创建由 AI 渲染的一致且多样化的游戏玩法,向能够增强游戏创作者能力的生成式人工智能模型迈出了重要一步。

由 Muse(基于 WHAM-1.6B)生成的游戏序列示例表明,该模型可以生成在几分钟内保持一致的复杂游戏序列。以下显示的所有示例,都是通过向模型提示 10 个初始帧(1 秒)的人类游戏和整个游戏序列的控制器动作生成的。Muse 是在 “世界模型模式 ”下使用的,也就是说,它是用来预测游戏将如何从初始提示序列演变而来。生成的游戏序列与实际游戏的相似度越高,说明 Muse 对游戏动态的捕捉越准确。

image

微软 Xbox 团队称,尽管还为时尚早,但这项模型研究已突破其想象。如今,与老化硬件相联系的无数经典游戏已不再为大多数人所玩。得益于这一突破,他们正在探索 Muse 的潜力,它可以从我们的工作室获取较旧的旧目录游戏,并针对任何设备对其进行优化。“我们相信,这可能会从根本上改变我们未来保存和体验经典游戏的方式,让更多玩家能够使用它们。想象一下,随着时间的流逝和硬件的进步而消失在公众视野的旧日热门作品,将有一天可以在玩家的眼前再次焕发新生。对我们来说,这是个令人兴奋的可能性。”

Xbox 团队正在探索的另一个机会是 Muse 如何帮助游戏团队在创作过程中设计新的游戏体验原型,并引入新的内容——通过玩家已经喜爱的游戏,让开发人员为他们注入新的体验,甚至让其能够参与到创作过程中。他们已经在使用 Muse 开发一款“具备玩乐属性的实时 AI 模型”,其在微软第一方游戏之上进行训练。而生成式 AI 有望在游戏开发的某些环节中发挥作用。在原型设计阶段,开发人员可以创建游戏的基础和迭代版本,以便实现自己的想法并制定最终愿景。微软表示,“我们看到这项工作有朝一日可能会使玩家和游戏创作者都受益:从重振怀旧游戏到更快地进行创意构思。”

与此同时,为了帮助其他研究人员探索这一模型并在其工作基础上更进一步,Xbox 团队开放了 Muse 的权重和样本数据的来源,并为 WHAM 演示器提供了可执行文件——WHAM 演示器概念原型提供了与 WHAM 模型交互的可视化界面和多种提示模型的方法,开发人员可以在 Azure AI Foundry 上学习和实验权重、样本数据和 WHAM 演示器。

训练从一开始就让用户参与:

相当于 7 年多“老玩家”

对于 Muse,最初 Microsoft Research 着手探索生成式 AI 模型如何支持新体验,重点是开发人工智能能力,使游戏开发人员能够以新的方式构思和扩展他们的作品。为了实现这一目标,他们采访了 27 位全球游戏创作者(从独立游戏公司到 AAA 级游戏工作室),以确保研究是由使用它的人来决定的。

据微软高级首席研究经理兼 Microsoft Research Game Intelligence 团队负责人 Katja Hofmann 介绍,从一开始他们就让用户参与了进来。其与高级首席研究经理 Cecily Morrison 带领的 Teachable AI Experiences 团队就这项工作的各个方面进行了几个月的讨论,并由 Cecily、设计研究员 Linda Wen 和首席研究软件开发工程师 Martin Grayson 推动,与游戏创作者们合作,调查这些游戏创作者希望如何在他们的创作实践中使用生成式人工智能功能。

Cecily 说:“这是一个很好的机会,我们可以在这个早期阶段联合起来,从一开始就塑造模型能力,以满足创作者的需求,而不是试图改造已经开发出来的技术。Linda 称,“我们已经看到技术驱动的 AI 创新经常让创作者措手不及,让许多人感到被排斥。这就是为什么我们从一开始就邀请游戏创作者来帮助我们塑造这项技术。我们认识到,大多数人工智能创新都是在全球北方地区开发的,因此我们还优先考虑招募来自代表性不足的背景和地区的游戏创作者。”

image

另据微软表示,在工作中他们还遇到了扩大模型训练规模等关键挑战。开始使用的是 V100 集群,在该集群上,他们能够证明如何在多达 100 个 GPU 上进行扩展训练;这最终为在 H100 上进行大规模训练铺平了道路。其早期做出的关键设计决定主要集中在如何更好地利用大型语言模型(LLM)社区的见解,包括如何有效地表示对应玩家控制器操作,尤其是图像等选择。

据了解,当前的 Muse 实例是根据 Xbox 游戏《Bleeding Edge》中的人类游戏数据(视觉效果和控制器动作)进行训练的。以下显示的是他们训练当前模型时采用的分辨率,为 300×180 px 。Muse(使用 WHAM-1.6B)已在超过 10 亿张图像和对应玩家控制器操作上进行了训练,相当于人类连续 7 年多的游戏时间。

遭开发商和一线开发者唱衰?

开发者和在线社区的普遍反应也非常迅速,但从结果来看对 Muse 的评价并不积极,甚至这项技术在从事游戏开发的一线制作者当中越来越受到抵制。面对 Muse 的发布,一位开发者回应称,“这类工具的涌现在为一部分人迅速赋能的同时,却根本不在乎对其他人造成的巨大冲击。”

资深游戏开发者、开发工作室 The Outsiders 的创始人 David Goldfarb 在一条发言中指出,他觉得生成式 AI 对于电子游戏没什么好处。“因为无论是有意为之还是无心之举,AI 背后的推动者实际上都是在削减资本支出,进而剥夺并贬低数百万游戏开发者和艺术家们所付出的汗水与心力。”Goldfarb 还提到,“主要问题在于,我们赖以生存的开发手艺正在消散。随着从业者越来越依赖 AI 技术,这类工具的涌现在为一部分人迅速赋能的同时,却根本不在乎对其他人造成的巨大冲击。”

根据此前 WIRED 发起的一项调查发现,AI 技术正将人类从业者剥离出电子游戏的创作流程;而与此同时,整个游戏行业也正在经历大规模收缩。过去几年间,成千上万的开发人员遭到解雇,且这一趋势将在 2025 年持续存在。虽然一部分开发者认为 AI 无法取代游戏中的纯创意部分,但多数从业人士仍然担心随着 AI 新工具的迅速发展,自己将无法在这个本就竞争激烈的行业当中继续生存。

微软的游戏部门似乎同样存在这种现象。一位 3A 游戏开发者(因未获准公开谈论 Muse 而要求保持匿名)透露,“Xbox 团队一边不断加大对生成式 AI 的投入,另一方面却无视开发人才流失的关键问题,属于典型的‘只见树木却不见森林’。他们没有意识到,开发者们根本就不想要什么 AI。但之所以计划还能推进得下去,就是因为大家不敢在内部讨论中表示反对,不敢在这个行业动荡的关键时期因成为‘出头鸟’而失去工作。”

另一家同样要求匿名的游戏开发商对此表示赞同,称他们同样担心反对 Muse 会影响到自己的工作和生计。“虽然只能匿名发言,但这种东西真的太恶心了。面对如今的游戏行业现状,特别是考虑到我们还得求着微软提供游戏出版许可,我实在不敢拿自己的身家性命来冒险。”这家开发商还提到,“在我看来,这种全面推广 AI 的模式绝不是为了帮助游戏开发者,而是想取悦股东,表明微软正在全力投入 AI。可与此同时,他们却只字不提 AI 从未开发出任何广受好评的游戏作品。”

英国游戏开发商 Creative Assembly 的开发总监 Marc Burrage 表示,即便有大模型的加持,计算机也无法在训练过程中获得与人类相同的知识。在 Burrage 看来,“原型设计既关注过程、也关注结果,必须亲身体验才能把握可玩性这个近乎玄学的概念。快速原型设计是一项宝贵的技能,哪怕是提前做好一切准备,也不存在百分百通往成功的捷径。”

在 Muse 的项目公告中,Xbox 团队方面称,“我们认为,最重要的是确保这波生成式 AI 技术突破,能够以协作且负责任的方式支持我们的行业和游戏创作社区。”而从实际反馈来看,微软要想说服游戏从业者们接下这张 AI 增效的“大饼”,还有很多工作要做。一位网友直言,“如果我们都失业了,没有人会买你的游戏。”

image

参考链接:

https://news.xbox.com/en-us/2025/02/19/muse-ai-xbox-empowering-creators-and-players/

https://www.microsoft.com/en-us/research/blog/introducing-muse-our-first-generative-ai-model-designed-for-gameplay-ideation/

https://www.wired.com/story/xbox-muse-generative-ai-developers-say-nobody-will-want-this/

声明:本文为 InfoQ AI前线整理,不代表平台观点,未经许可禁止转载。

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

67820096c399ed5d1d3e9024b60b9c1a.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

1adcb01daae83e3c0687f094829a751b.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值