来源:AI深度研究员
(宾大工程学院,对话Meta首席AI科学家Yann LeCun)
最近的一两周时间里,65 岁图灵奖得主 、Meta首席AI科学家Yann LeCun(杨立昆) 先后出现在新加坡国立大学与宾大工程学院的讲台。他没有谈参数,也没有夸算力,而是抛出一句让全场安静的反问——
“当模型连‘杯子在桌子上’都可能答错,为什么我们敢说它懂世界?”
✍️ 第一节|第一道墙:看不懂物理世界
“我们最聪明的 AI 系统,连猫都不如。它们不能理解物理世界的常识。” ——Yann LeCun
“我们现在的 AI 系统,在这方面连狗都不如。”
📌 问题不在于数据,而在于“看世界的方式”
🧠 LeCun的解法:预测真实,而非生成语言
LeCun认为,越过这堵“物理常识缺失”的墙,关键不在于调模型、堆算力,而在于:
让系统具备对现实的抽象建模能力,而不是只是生成语言。
今天的AI,可以告诉你‘这个杯子掉了’,但它不知道‘为什么会掉’。
而真正的智能,正是从“因果理解”开始的。
不是让AI变得更能“说”,而是更能“懂”。
✍️ 第二节|第二道墙:没有长时记忆
“大语言模型并不真正拥有记忆。它们只是看得更多,但记不住任何事。” ——Yann LeCun
“我们一个4岁的孩子在成长过程中大概接收了 10¹⁴ 字节的信息。而一个 GPT 级别的模型,也训练了 10¹⁴ 字节的 token。”
数据量看起来相似,但差别巨大。
人类不是只“看”这么多——而是整合、抽象、积累并持续更新。而大模型只是“扫一遍,然后忘掉”。
🔍 这就是为什么模型越大,输出却越来越“无主体感”
🧠 记忆机制,才是下一代智能系统的核心突破口
✍️ 第三节|第三道墙:没有推理结构
“我们今天的大语言模型,不是在思考,而是在猜下一个词。” ——Yann LeCun
🧠 推理,意味着目标导向的结构展开
真正的推理不是“接下来该说什么”,而是:
面对一个从未遇见的问题;
在脑中调用规则、模型和假设;
一步步演绎、分解、验证。
LeCun强调,大语言模型在结构上根本不具备这套能力:
“语言模型不是问题求解器,它只是一个自编码器,以预测为本能。”
🧨 他公开反对“奖励足够了”这类路径幻想
🔍 没有内部模型,AI 只能“碰运气”
✍️ 第四节|破解路径:JEPA 架构登场
“我们要让系统预测现实,而不是续写句子。” ——Yann LeCun
我们不是让系统在像素层面重建视频,而是在高层抽象空间中预测接下来会发生什么。
🔍 为什么要预测表示,而不是还原原始数据?
LeCun指出:视频、音频等连续信号高度复杂,预测像素几乎不可能。 但我们可以先学习一个低维度的、抽象的“潜在表示空间”,再在这个空间中进行预测。
这类似人脑在看见一段动作后,不是还原每一帧,而是形成一个动态理解模型。
📌 JEPA 的区别在哪里?
JEPA 是 LeCun 概念中的“高级机器智能”(AMI)架构的底座。
JEPA 不是商业上的“下一代模型”,而是方向上的重新定向。
LeCun的回答很清晰:如果我们不改变底层架构,就永远造不出真正懂世界的 AI。
✍️ 第五节|重定义:AMI 取代 AGI?
“AGI 是伪命题,我们需要的是 AMI——高级机器智能。” ——Yann LeCun
LeCun并不回避“通用人工智能”这个话题。但他的态度很明确:他不信 AGI,也不追 AGI。
他认为这个概念存在两个根本问题:
误判了人类智能的本质
掩盖了真正的系统设计路径
🧠 人类智能,从来不是“通用”的
人类智能是非常专门化的,只是在我们擅长的任务上看起来很强。
LeCun提出一个看似挑衅,实则深刻的观点:我们之所以觉得自己“通用”,是因为我们无法意识到那些我们永远无法理解的事物。
所以我们误以为:我们能理解的,就是全部。
而 AGI,恰恰建立在这种错觉之上。
📌 AMI:比“通用”更现实的目标
LeCun提出一个替代概念:AMI(Advanced Machine Intelligence)
它的特征不是“无所不能”,而是具备以下核心能力:
对现实有抽象建模能力(世界模型)
有持久记忆和状态追踪机制
能规划、分解任务、做中长期推理
能通过多模态感知和环境互动逐步学习
AMI 不是试图“模拟人类”,而是构建适合机器自身的智能系统架构。这是一种系统理性,而非幻想超越。
💡 为什么 AMI 更重要?
AGI是一个故事,AMI是一个系统。
前者吸引投资,后者真正推进能力边界。
LeCun的选择很明确:他不站在 hype 上,他站在架构底层。
✍️ 第六节|行动建议:别卷模型,卷架构
“学术界不该再追 LLM,应该去做工业界没时间做的事。” ——Yann LeCun
LeCun的这句话,像是对整个AI创业圈泼下的一盆冷水。
所有人都在调模型、堆RAG、炼提示词。 但在他看来,这种热闹的局面,本质上是资源错配。
🔍 LLM 已是产业路线,创新窗口正迅速关闭
LeCun点出一个现实:“LLM 已经掌握在工业界手里,几家公司用几千张 GPU,配几百名工程师在打磨。学术界很难再贡献突破性的东西。”
这话也适用于大多数 AI 初创公司。
如果你做的,是“训练大模型”或“在大模型上包皮”,那么你面临的,不是技术门槛,而是资源垄断与同质化淘汰赛。
🧠 真正的“空白地带”,藏在三道认知墙之后
LeCun给出了新的方向:
具身智能(Embodied AI)
多模态感知(视觉+触觉+动作)
表示学习与预测建模(JEPA架构)
长期记忆与推理能力
这些并不是市场热点,但它们有一个共同特征:
没人有现成方案,没人规模化做,没人垄断 GPU。
这才是技术创业者最应该押注的地方。
📌 创业机会,不在模型后缀,而在架构前提
不是 GPT-Next、Claude-Plus、LLaMA-Max, 而是:
谁能构建新一代“表示系统”;
谁能让 AI 理解连续世界;
谁能让系统从行动中自主学习。
LLM 是终点,JEPA 是起点。
真正的下一代 AI,不是能说得更顺,而是能想得更深。
🧭 你以为AI在进化,其实是认知还没进化
Yann LeCun 这场公开对话,抛出的不是技术路线图,而是一个基本问题:
我们理解的“智能”,到底是什么?
当全世界都在追求更大的模型、更低的token成本、更快的输出速度, LeCun却回到起点,追问了三件事:
AI 看得见世界,但看得懂吗?
它能说一段话,但能记住刚才那句话吗?
它能接得上节奏,但知道要往哪去吗?
如果这些都不能,智能不过是算法的幻觉。
在这场由 OpenAI 引爆的大模型竞赛中, 越来越多的人误把 token 的生成能力,当成智能的全部。
但真正的竞争力,可能藏在这些不被注意的角落里:
能不能建构世界模型?
能不能规划行动?
能不能拥有自己的“认知系统”?
LeCun 的提问,像是一道延迟引爆的火线—— 它让所有从业者都必须重新思考:
你是在提升模型能力,还是在放弃对智能的定义权?
未来真正值钱的,不是会生成的模型,而是能理解问题的人类。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https://wx.zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI 2025 关于人工智能研究未来研究报告
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
壳牌:2025 能源安全远景报告:能源与人工智能(57 页)
盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)
Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)
IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)
DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt
联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)
TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)
NAVEX Global:2024 年十大风险与合规趋势报告(42 页)
《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页
2025 - 2035 年人形机器人发展趋势报告 53 页
Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)
【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt
Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)
谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新 170 页
美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)
罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)
兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)
康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)
国际能源署:2025 迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)
牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)
国际能源署(IEA):能效 2024 研究报告(127 页)
Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)
CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)
安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)
IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)
IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)
美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)
艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)
NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)
IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)
AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)
2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)
华为:2025 鸿蒙生态应用开发白皮书(133 页
《超级智能战略研究报告》
中美技术差距分析报告 2025
欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)
美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)
罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)
兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)
GTI:2024 先进感知技术白皮书(36 页)
AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)
安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)
哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)
德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)
奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)
Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150 页!《DeepSeek 大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)
真格基金:2024 美国独角兽观察报告(56 页)
璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
未来今日研究所 2025 年科技趋势报告第 18 版 1000 页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)
浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)
人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)
大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)
北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)
欧盟委员会 人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)
RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)
FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)
Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)
【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt
《21 世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)
光子盒:2025 全球量子计算产业发展展望报告(184 页)
奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)
Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)
《人类与人工智能协作的科学与艺术》284 页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115 页
《2025 年技术展望》56 页 slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)
Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)
北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)
北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)
CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)
中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)
AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)
上下滑动查看更多