图灵奖得主杨立昆现场追问:AI 还没越过这 3 道认知墙,谈什么通用智能?

来源:AI深度研究员

(宾大工程学院,对话Meta首席AI科学家Yann LeCun)

最近的一两周时间里,65 岁图灵奖得主 、Meta首席AI科学家Yann LeCun(杨立昆) 先后出现在新加坡国立大学与宾大工程学院的讲台。他没有谈参数,也没有夸算力,而是抛出一句让全场安静的反问——

“当模型连‘杯子在桌子上’都可能答错,为什么我们敢说它懂世界?”

图片

✍️ 第一节|第一道墙:看不懂物理世界

“我们最聪明的 AI 系统,连猫都不如。它们不能理解物理世界的常识。” ——Yann LeCun

图片

“我们现在的 AI 系统,在这方面连狗都不如。”

📌 问题不在于数据,而在于“看世界的方式”

图片

🧠 LeCun的解法:预测真实,而非生成语言

LeCun认为,越过这堵“物理常识缺失”的墙,关键不在于调模型、堆算力,而在于:

让系统具备对现实的抽象建模能力,而不是只是生成语言。

图片

今天的AI,可以告诉你‘这个杯子掉了’,但它不知道‘为什么会掉’。

而真正的智能,正是从“因果理解”开始的。

不是让AI变得更能“说”,而是更能“懂”。

✍️ 第二节|第二道墙:没有长时记忆

“大语言模型并不真正拥有记忆。它们只是看得更多,但记不住任何事。” ——Yann LeCun

图片

“我们一个4岁的孩子在成长过程中大概接收了 10¹⁴ 字节的信息。而一个 GPT 级别的模型,也训练了 10¹⁴ 字节的 token。”

数据量看起来相似,但差别巨大。

人类不是只“看”这么多——而是整合、抽象、积累并持续更新。而大模型只是“扫一遍,然后忘掉”。

🔍 这就是为什么模型越大,输出却越来越“无主体感”

图片

🧠 记忆机制,才是下一代智能系统的核心突破口

图片

✍️ 第三节|第三道墙:没有推理结构

“我们今天的大语言模型,不是在思考,而是在猜下一个词。” ——Yann LeCun

图片

🧠 推理,意味着目标导向的结构展开

真正的推理不是“接下来该说什么”,而是:

  • 面对一个从未遇见的问题;

  • 在脑中调用规则、模型和假设;

  • 一步步演绎、分解、验证。

LeCun强调,大语言模型在结构上根本不具备这套能力:

“语言模型不是问题求解器,它只是一个自编码器,以预测为本能。”

🧨 他公开反对“奖励足够了”这类路径幻想

图片

🔍 没有内部模型,AI 只能“碰运气”

图片

✍️ 第四节|破解路径:JEPA 架构登场

“我们要让系统预测现实,而不是续写句子。” ——Yann LeCun

图片

我们不是让系统在像素层面重建视频,而是在高层抽象空间中预测接下来会发生什么。

🔍 为什么要预测表示,而不是还原原始数据?

LeCun指出:视频、音频等连续信号高度复杂,预测像素几乎不可能。 但我们可以先学习一个低维度的、抽象的“潜在表示空间”,再在这个空间中进行预测。

这类似人脑在看见一段动作后,不是还原每一帧,而是形成一个动态理解模型。

📌 JEPA 的区别在哪里?

图片

JEPA 是 LeCun 概念中的“高级机器智能”(AMI)架构的底座。

JEPA 不是商业上的“下一代模型”,而是方向上的重新定向。

LeCun的回答很清晰:如果我们不改变底层架构,就永远造不出真正懂世界的 AI。

✍️ 第五节|重定义:AMI 取代 AGI?

“AGI 是伪命题,我们需要的是 AMI——高级机器智能。” ——Yann LeCun

LeCun并不回避“通用人工智能”这个话题。但他的态度很明确:他不信 AGI,也不追 AGI。

他认为这个概念存在两个根本问题:

  1. 误判了人类智能的本质

  2. 掩盖了真正的系统设计路径

🧠 人类智能,从来不是“通用”的

人类智能是非常专门化的,只是在我们擅长的任务上看起来很强。

LeCun提出一个看似挑衅,实则深刻的观点:我们之所以觉得自己“通用”,是因为我们无法意识到那些我们永远无法理解的事物。

所以我们误以为:我们能理解的,就是全部。

而 AGI,恰恰建立在这种错觉之上。

📌 AMI:比“通用”更现实的目标

LeCun提出一个替代概念:AMI(Advanced Machine Intelligence)

它的特征不是“无所不能”,而是具备以下核心能力:

  • 对现实有抽象建模能力(世界模型)

  • 有持久记忆和状态追踪机制

  • 能规划、分解任务、做中长期推理

  • 能通过多模态感知和环境互动逐步学习

AMI 不是试图“模拟人类”,而是构建适合机器自身的智能系统架构。这是一种系统理性,而非幻想超越。

💡 为什么 AMI 更重要?

AGI是一个故事,AMI是一个系统。

前者吸引投资,后者真正推进能力边界。

LeCun的选择很明确:他不站在 hype 上,他站在架构底层。

✍️ 第六节|行动建议:别卷模型,卷架构

“学术界不该再追 LLM,应该去做工业界没时间做的事。” ——Yann LeCun

LeCun的这句话,像是对整个AI创业圈泼下的一盆冷水。

所有人都在调模型、堆RAG、炼提示词。 但在他看来,这种热闹的局面,本质上是资源错配。

🔍 LLM 已是产业路线,创新窗口正迅速关闭

LeCun点出一个现实:“LLM 已经掌握在工业界手里,几家公司用几千张 GPU,配几百名工程师在打磨。学术界很难再贡献突破性的东西。”

这话也适用于大多数 AI 初创公司。

如果你做的,是“训练大模型”或“在大模型上包皮”,那么你面临的,不是技术门槛,而是资源垄断与同质化淘汰赛。

🧠 真正的“空白地带”,藏在三道认知墙之后

LeCun给出了新的方向:

  • 具身智能(Embodied AI)

  • 多模态感知(视觉+触觉+动作)

  • 表示学习与预测建模(JEPA架构)

  • 长期记忆与推理能力

这些并不是市场热点,但它们有一个共同特征:

没人有现成方案,没人规模化做,没人垄断 GPU。

这才是技术创业者最应该押注的地方。

📌 创业机会,不在模型后缀,而在架构前提

不是 GPT-Next、Claude-Plus、LLaMA-Max, 而是:

  • 谁能构建新一代“表示系统”;

  • 谁能让 AI 理解连续世界;

  • 谁能让系统从行动中自主学习。

LLM 是终点,JEPA 是起点。

真正的下一代 AI,不是能说得更顺,而是能想得更深。

🧭 你以为AI在进化,其实是认知还没进化

Yann LeCun 这场公开对话,抛出的不是技术路线图,而是一个基本问题:

我们理解的“智能”,到底是什么?

当全世界都在追求更大的模型、更低的token成本、更快的输出速度, LeCun却回到起点,追问了三件事:

  • AI 看得见世界,但看得懂吗?

  • 它能说一段话,但能记住刚才那句话吗?

  • 它能接得上节奏,但知道要往哪去吗?

如果这些都不能,智能不过是算法的幻觉。

在这场由 OpenAI 引爆的大模型竞赛中, 越来越多的人误把 token 的生成能力,当成智能的全部。

但真正的竞争力,可能藏在这些不被注意的角落里:

  • 能不能建构世界模型?

  • 能不能规划行动?

  • 能不能拥有自己的“认知系统”?

LeCun 的提问,像是一道延迟引爆的火线—— 它让所有从业者都必须重新思考:

你是在提升模型能力,还是在放弃对智能的定义权?

未来真正值钱的,不是会生成的模型,而是能理解问题的人类。

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告

(加入未来知识库,全部资料免费阅读和下载)

  1. 牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》

  2. 麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力

  3. AAAI 2025 关于人工智能研究未来研究报告

  4. 斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)

  5. 壳牌:2025 能源安全远景报告:能源与人工智能(57 页)

  6. 盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)

  7. Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)

  8. IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)

  9. DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt

  10. 联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)

  11. TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)

  12. NAVEX Global:2024 年十大风险与合规趋势报告(42 页)

  13. 《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页

  14. 2025 - 2035 年人形机器人发展趋势报告 53 页

  15. Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)

  16. 【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt

  17. Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)

  18. 谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)

  19. 【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习

  20. 《基于传感器的机器学习车辆分类》最新 170 页

  21. 美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)

  22. 罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)

  23. 兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)

  24. 康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)

  25. 国际能源署:2025 迈向核能新时代

  26. 麦肯锡:人工智能现状,组织如何重塑自身以获取价值

  27. 威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)

  28. 牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)

  29. 国际能源署(IEA):能效 2024 研究报告(127 页)

  30. Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)

  31. CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)

  32. 世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告

  33. 迈向推理时代:大型语言模型的长链推理研究综述

  34. 波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)

  35. 安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)

  36. IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)

  37. IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)

  38. CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)

  39. 《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页

  40. 《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》

  41. 全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)

  42. 美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)

  43. 艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)

  44. NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)

  45. IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)

  46. AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)

  47. 2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)

  48. 华为:2025 鸿蒙生态应用开发白皮书(133 页

  49. 《超级智能战略研究报告》

  50. 中美技术差距分析报告 2025

  51. 欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)

  52. 美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)

  53. 罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)

  54. 兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)

  55. GTI:2024 先进感知技术白皮书(36 页)

  56. AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)

  57. 安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告

  58. 威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)

  59. 兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)

  60. 哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)

  61. 德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)

  62. 奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)

  63. HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)

  64. Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)

  65. 《无人机辅助的天空地一体化网络:学习算法技术综述》

  66. 谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)

  67. 《新兴技术与风险分析:太空领域与关键基础设施》最新报告

  68. 150 页!《DeepSeek 大模型生态报告》

  69. 军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)

  70. 真格基金:2024 美国独角兽观察报告(56 页)

  71. 璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)

  72. 国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)

  73. RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)

  74. 国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)

  75. RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)

  76. 未来今日研究所 2025 年科技趋势报告第 18 版 1000 页

  77. 模拟真实世界:多模态生成模型的统一综述

  78. 中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)

  79. 浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)

  80. 人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)

  81. 大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)

  82. 北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)

  83. 欧盟委员会 人工智能与未来工作研究报告

  84. 加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用

  85. 电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)

  86. RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)

  87. FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)

  88. Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)

  89. 【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt

  90. 《21 世纪美国的主导地位:核聚变》最新报告

  91. 沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)

  92. 斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)

  93. 国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)

  94. 光子盒:2025 全球量子计算产业发展展望报告(184 页)

  95. 奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)

  96. Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)

  97. 《人类与人工智能协作的科学与艺术》284 页博士论文

  98. 《论多智能体决策的复杂性:从博弈学习到部分监控》115 页

  99. 《2025 年技术展望》56 页 slides

  100. 大语言模型在多智能体自动驾驶系统中的应用:近期进展综述

  101. 【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用

  102. 皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)

  103. 空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)

  104. Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)

  105. 北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)

  106. 北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)

  107. CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)

  108. 中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)

  109. AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值