来源:学术头条
作者:与可
科学发现也可以遵从 Scaling Laws?
一种结合 agentic AI 和具身机器人技术的自主通才科学家(AGS),有望实现整个研究生命周期的自动化,进而催生出科学发现的 Scaling Laws。
AGS 这一概念,来自多伦多大学和意大利技术研究院联合团队及其合作者。他们认为,利用基础模型中的综合学科知识,AGS 可以自动进行跨数字和物理领域的科学探索,将推动具有重大社会影响的创新。
相关研究论文以“Scaling Laws in Scientific Discovery with AI and Robot Scientists”为题,已发表在预印本网站 arXiv 上。
论文链接:
https://arxiv.org/abs/2503.22444
自主通才科学家的 5 个层级
AGS 代表了一种由 AI 驱动的机器人系统,旨在开展跨科学领域的研究。研究团队认为,AGS 将在速度、范围和深度上比肩并最终超越人类科学家。
图|AGS 框架。研究 agent/机器人可以加速科学研究进展,弥合不同学科之间的科学知识鸿沟。
图|不同自动化级别的自动化研究时间表
根据 AGS 的自主程度、与模拟环境和真实世界环境的交互能力,以及总体研究能力,研究团队将科学发现自动化划分为 5 个不同层级。包括:
作为辅助工具的 Level 1;作为智能助理的 Level 2;作为合作伙伴的 Level 3;作为研究者的 Level 4;作为先驱者的 Level 5,这是该领域的长期目标。
图|AGS的 5 个层级
那么,AGS 是如何实现整个研究生命周期自动化的?主要涉及文献综述、提出问题、实验、准备成稿、反思和反馈 5 个部分。
在文献综述方面,传统的研究工作依赖于人工搜索和对无数论文的分析,这一缓
慢的过程往往受到过时数据访问的限制。
近期的工作通过 OS Agents 自主、全面地获取信息,智能处理、合成和 gap 识别,在虚拟环境中模拟人类行动来完成复杂的搜索和任务。
在提出问题方面,LLM 生成的想法始终比人类专家提出的想法更新颖。AGS 框架通过全面的提案开发流程扩展了生成研究想法的能力。
AGS 对文献进行自动 gap 分析,找出矛盾和未探索的联系。制定具有明确研究边界的精确问题,根据理论基础生成可检验的假设,设计具有适当控制和统计考虑因素的严格方法,制定包括时间表和资源要求在内的详细实施计划,确保研究问题既具有创新性,又具有实际可执行性。
在实验方面,基于所有学科包含虚拟理论构建和实际操作的双重性,AI 通过先进的模拟、优化和数据分析能力彻底改变了虚拟实验,但物理实验的自动化仍然严重不足。
这些制约因素突出表明,我们亟需具身智能系统以人类科学家特有的精确性、适应性和情境感知能力执行复杂物理操作。
图|操作需求的综合考量
将世界模型与基于 LLM 的具身 AI 相结合,标志着通用机器人将结构化的环境表征与复杂的认知能力结合在一起,以更高的自主性和对情境的理解力执行各种任务,有效地将抽象思维与物理行动连接起来。AI 与先进的机器人技术相结合,简化了虚拟或数字实验和实验室环境的实验流程。
图|研究任务中的 agent 和机器人方法比较
在成稿过程中,涉及综合实验结果、合理组织信息以及向学术界有效传达研究发现。传统上,研究人员在确保事实的准确性、遵守学科惯例以及用通俗易懂的语言表达复杂的概念方面临着许多挑战。
研究团队认为,用 AI 系统来弥合实验结果与学术文献之间的 gap,模拟同行评审和内外部评审,在投稿前提高稿件质量。最后简化综合评审、完善格式和投稿协调流程,可以促进稿件高效发表。
在反思和反馈部分,全面的信息交流和分析性自我评估是确保研究进展一致的重要组成部分。这些机制促进了研究阶段之间的知识转移,类似于人类研究团队中的协同动力学。通过分析性自我评估和无缝整合各研究阶段的见解,实现对科学流程的持续监控和迭代改进,促进了绩效分析和战略调整,最终加强了后续研究成果和科学产出的整体质量。
将战略性模块互动与系统性过程评估相结合,可增强假设的提出、方法的精确性和科学成果的质量。此外,纳入不同的外部观点,可以引入替代分析框架并确定潜在的改进机会。
图|全球科研产出和科研人员队伍的历史模式和预测发展
科学发现也有 Scaling Laws?
AGS 是一个开创性的框架,利用基础模型中的综合学科知识,同时将 AI 智能体的能力与具身机器人系统协同起来,自动进行跨数字和物理领域的科学探索。
这种统一的方法可以实现快速数据处理、假设生成和自动虚拟实验,并结合先进的现实世界研究实施,在计算模拟和实验室实验之间架起桥梁,从而实现跨数字和物理领域的自动化科学探索。它超越了传统的研究界限,不仅推动了既有学科的发展,还为全新的研究途径奠定了基础。
研究团队表示,计算平台和机器人平台固有的可重复性为知识发现提供了新的 Scaling Laws,有可能使研究生产力超越传统的以人为本的方法。AI 与机器人技术之间的协同作用必将改变学术研究,推动具有重大社会影响的创新。
图|科学发现范式的演变:从以人为本的研究到协作系统,再到 AGS,打破并超越物理和知识的界限。
附:3 个开放研究问题
如何管理来自 AI 和机器人科学家的出版物:我们需要一个预印本开放平台吗?
在处理由 AGS 自主生成的出版物和提案时,主要为人类研究人员设计的传统学术系统可能会面临挑战。研究团队建议,建立一个中介平台 AIXIV,以弥合AI/机器人科学家与成熟的学术出版环境之间的差距。
AIXIV 将作为一个开放的预印本服务器,专门用于自主系统产生的研究成果,并针对 AI 驱动的发现的独特性实施分级审核流程。它还将充当一个公共论坛,AI 和机器人科学家(代表非人类实体)可以在此提交研究成果,形式包括创新提案和综合性学术论文,涉及广泛的科学领域。最终可能通过促进创新、维护学术诚信以及最终加快科学发现的步伐来彻底改变科学出版。
图|AIXIV 服务器平台框架,供 AI 和机器人科学家发表论文和提出建议。
机器人科学家必须是人形机器人吗?
严格来说,人形设计并不是机器人有效发挥作用的先决条件。人形机器人与现有的以人为中心的实验室环境和研究设施的兼容性是一大优势。它们能够在这些空间中自由穿梭,无需进行大量改动即可使用标准设备,从而简化了集成过程。此外,先进的操纵能力,特别是灵巧地使用双手的能力,使人形机器人能够执行复杂的任务、处理精密仪器和执行要求精细运动技能的实验。人形机器人还能与人类同事进行更顺畅、更直观的互动,从而增强研究团队内部的合作与交流。
虽然人形机器人在通用科学研究和无缝集成到人类设计的基础设施中具有优势,但具有复杂操纵能力的移动机器人系统,为各种科学研究提供了可行且可能更高效的替代方案。机器人科学家的最佳外形尺寸很可能取决于具体的研究任务和工作环境。
机器人科学家能否在超越人类生理极限的极端环境中进行独立科学探索?
机器人科学家为将科学研究扩展到地球边界以外的太空探索,以及人类无法进入或危险的其他极端环境提供了巨大潜力。它可以在月球和火星上建立研究能力,然后这些自主系统可以有条不紊地将业务扩展到整个太阳系,甚至可能扩展到更远的地方,还可以彻底改变我们对地球深海的认识。它们的能力还扩展到微米和纳米尺度,可以在先进材料科学、人体内靶向给药或微观污染物环境监测等领域开展独立的科学探索。
随着技术的不断进步,通过不断的探索和发现,这些系统将超越人类的生理极限,极大地提高我们对宇宙、地球甚至物质基本组成的认识。
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
https://wx.zsxq.com/group/454854145828
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

截止到3月31日 ”未来知识库”精选的百部前沿科技趋势报告
(加入未来知识库,全部资料免费阅读和下载)
牛津未来研究院 《将人工智能安全视为全球公共产品的影响、挑战与研究重点》
麦肯锡:超级智能机构:赋能人们释放人工智能的全部潜力
AAAI 2025 关于人工智能研究未来研究报告
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
壳牌:2025 能源安全远景报告:能源与人工智能(57 页)
盖洛普 & 牛津幸福研究中心:2025 年世界幸福报告(260 页)
Schwab :2025 未来共生:以集体社会创新破解重大社会挑战研究报告(36 页)
IMD:2024 年全球数字竞争力排名报告:跨越数字鸿沟人才培养与数字法治是关键(214 页)
DS 系列专题:DeepSeek 技术溯源及前沿探索,50 页 ppt
联合国人居署:2024 全球城市负责任人工智能评估报告:利用 AI 构建以人为本的智慧城市(86 页)
TechUK:2025 全球复杂多变背景下的英国科技产业:战略韧性与增长路径研究报告(52 页)
NAVEX Global:2024 年十大风险与合规趋势报告(42 页)
《具身物理交互在机器人 - 机器人及机器人 - 人协作中的应用》122 页
2025 - 2035 年人形机器人发展趋势报告 53 页
Evaluate Pharma:2024 年全球生物制药行业展望报告:增长驱动力分析(29 页)
【AAAI2025 教程】基础模型与具身智能体的交汇,350 页 ppt
Tracxn:2025 全球飞行汽车行业市场研究报告(45 页)
谷歌:2024 人工智能短跑选手(AI Sprinters):捕捉新兴市场 AI 经济机遇报告(39 页)
【斯坦福博士论文】构建类人化具身智能体:从人类行为中学习
《基于传感器的机器学习车辆分类》最新 170 页
美国安全与新兴技术中心:2025 CSET 对美国人工智能行动计划的建议(18 页)
罗兰贝格:2024 人形机器人的崛起:从科幻到现实:如何参与潜在变革研究报告(11 页)
兰德公司:2025 从研究到现实:NHS 的研究和创新是实现十年计划的关键报告(209 页)
康桥汇世(Cambridge Associates):2025 年全球经济展望报告(44 页)
国际能源署:2025 迈向核能新时代
麦肯锡:人工智能现状,组织如何重塑自身以获取价值
威立(Wiley):2025 全球科研人员人工智能研究报告(38 页)
牛津经济研究院:2025 TikTok 对美国就业的量化影响研究报告:470 万岗位(14 页)
国际能源署(IEA):能效 2024 研究报告(127 页)
Workday :2025 发挥人类潜能:人工智能(AI)技能革命研究报告(20 页)
CertiK:Hack3D:2024 年 Web3.0 安全报告(28 页)
世界经济论坛:工业制造中的前沿技术:人工智能代理的崛起》报告
迈向推理时代:大型语言模型的长链推理研究综述
波士顿咨询:2025 亚太地区生成式 AI 的崛起研究报告:从技术追赶者到全球领导者的跨越(15 页)
安联(Allianz):2025 新势力崛起:全球芯片战争与半导体产业格局重构研究报告(33 页)
IMT:2025 具身智能(Embodied AI)概念、核心要素及未来进展:趋势与挑战研究报告(25 页)
IEEE:2025 具身智能(Embodied AI)综述:从模拟器到研究任务的调查分析报告(15 页)
CCAV:2025 当 AI 接管方向盘:自动驾驶场景下的人机交互认知重构、变革及对策研究报告(124 页)
《强化学习自我博弈方法在兵棋推演分析与开发中的应用》最新 132 页
《面向科学发现的智能体人工智能:进展、挑战与未来方向综述》
全国机器人标准化技术委员会:人形机器人标准化白皮书(2024 版)(96 页)
美国国家科学委员会(NSB):2024 年研究与发展 - 美国趋势及国际比较(51 页)
艾昆纬(IQVIA):2025 骨科手术机器人技术的崛起白皮书:创新及未来方向(17 页)
NPL&Beauhurst:2025 英国量子产业洞察报告:私人和公共投资的作用(25 页)
IEA PVPS:2024 光伏系统经济与技术关键绩效指标(KPI)使用最佳实践指南(65 页)
AGI 智能时代:2025 让 DeepSeek 更有趣更有深度的思考研究分析报告(24 页)
2025 军事领域人工智能应用场景、国内外军事人工智能发展现状及未来趋势分析报告(37 页)
华为:2025 鸿蒙生态应用开发白皮书(133 页
《超级智能战略研究报告》
中美技术差距分析报告 2025
欧洲量子产业联盟(QuIC):2024 年全球量子技术专利态势分析白皮书(34 页)
美国能源部:2021 超级高铁技术(Hyperloop)对电网和交通能源的影响研究报告(60 页)
罗马大学:2025 超级高铁(Hyperloop):第五种新型交通方式 - 技术研发进展、优势及局限性研究报告(72 页)
兰德公司:2025 灾难性网络风险保险研究报告:市场趋势与政策选择(93 页)
GTI:2024 先进感知技术白皮书(36 页)
AAAI:2025 人工智能研究的未来报告:17 大关键议题(88 页)
安联 Allianz2025 新势力崛起全球芯片战争与半导体产业格局重构研究报告
威达信:2025 全球洪水风险研究报告:现状、趋势及应对措施(22 页)
兰德公司:迈向人工智能治理研究报告:2024EqualAI 峰会洞察及建议(19 页)
哈佛商业评论:2025 人工智能时代下的现代软件开发实践报告(12 页)
德安华:全球航空航天、国防及政府服务研究报告:2024 年回顾及 2025 年展望(27 页)
奥雅纳:2024 塑造超级高铁(Hyperloop)的未来:监管如何推动发展与创新研究报告(28 页)
HSOAC:2025 美国新兴技术与风险评估报告:太空领域和关键基础设施(24 页)
Dealroom:2025 欧洲经济与科技创新发展态势、挑战及策略研究报告(76 页)
《无人机辅助的天空地一体化网络:学习算法技术综述》
谷歌云(Google Cloud):2025 年 AI 商业趋势白皮书(49 页)
《新兴技术与风险分析:太空领域与关键基础设施》最新报告
150 页!《DeepSeek 大模型生态报告》
军事人工智能行业研究报告:技术奇点驱动应用加速智能化重塑现代战争形态 - 250309(40 页)
真格基金:2024 美国独角兽观察报告(56 页)
璞跃(Plug and Play):2025 未来商业研究报告:六大趋势分析(67 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
国际电工委员会(IEC):2025 智能水电技术与市场展望报告(90 页)
RWS:2025 智驭 AI 冲击波:人机协作的未来研究报告(39 页)
未来今日研究所 2025 年科技趋势报告第 18 版 1000 页
模拟真实世界:多模态生成模型的统一综述
中国信息协会低空经济分会:低空经济发展报告(2024 - 2025)(117 页)
浙江大学:2025 语言解码双生花:人类经验与 AI 算法的镜像之旅(42 页)
人形机器人行业:由 “外” 到 “内” 智能革命 - 250306(51 页)
大成:2025 年全球人工智能趋势报告:关键法律问题(28 页)
北京大学:2025 年 DeepSeek 原理和落地应用报告(57 页)
欧盟委员会 人工智能与未来工作研究报告
加州大学伯克利分校:面向科学发现的多模态基础模型:在化学、材料和生物学中的应用
电子行业:从柔性传感到人形机器人触觉革命 - 250226(35 页)
RT 轨道交通:2024 年中国城市轨道交通市场数据报告(188 页)
FastMoss:2024 年度 TikTok 生态发展白皮书(122 页)
Check Point:2025 年网络安全报告 - 主要威胁、新兴趋势和 CISO 建议(57 页)
【AAAI2025 教程】评估大型语言模型:挑战与方法,199 页 ppt
《21 世纪美国的主导地位:核聚变》最新报告
沃尔特基金会(Volta Foundation):2024 年全球电池行业年度报告(518 页)
斯坦福:2025 斯坦福新兴技术评论:十项关键技术及其政策影响分析报告(191 页)
国际科学理事会:2025 为人工智能做好国家研究生态系统的准备 - 2025 年战略与进展报告(英文版)(118 页)
光子盒:2025 全球量子计算产业发展展望报告(184 页)
奥纬论坛:2025 塑造未来的城市研究报告:全球 1500 个城市的商业吸引力指数排名(124 页)
Future Matters:2024 新兴技术与经济韧性:日本未来发展路径前瞻报告(17 页)
《人类与人工智能协作的科学与艺术》284 页博士论文
《论多智能体决策的复杂性:从博弈学习到部分监控》115 页
《2025 年技术展望》56 页 slides
大语言模型在多智能体自动驾驶系统中的应用:近期进展综述
【牛津大学博士论文】不确定性量化与因果考量在非策略决策制定中的应用
皮尤研究中心:2024 美国民众对气候变化及应对政策的态度调研报告:气候政策对美国经济影响的多元观点审视(28 页)
空间计算行业深度:发展趋势、关键技术、行业应用及相关公司深度梳理 - 250224(33 页)
Gartner:2025 网络安全中的 AI:明确战略方向研究报告(16 页)
北京大学:2025 年 DeepSeek 系列报告 - 提示词工程和落地场景(86 页)
北京大学:2025 年 DeepSeek 系列报告 - DeepSeek 与 AIGC 应用(99 页)
CIC 工信安全:2024 全球人工智能立法的主要模式、各国实践及发展趋势研究报告(42 页)
中科闻歌:2025 年人工智能技术发展与应用探索报告(61 页)
AGI 智能时代:2025 年 Grok - 3 大模型:技术突破与未来展望报告(28 页)
上下滑动查看更多