#include <stdio.h>
#include <stdlib.h>
/*由于不会动态获得当前堆的元素数量heap_size,所以暂时用传参的方法,但是当多次运行后发现
为了防止错误应该把heap_size设置为全局变量,主函数初始化后,让它被各个函数操作过程中动态
改变也是可以的。
*/
int left(int i)//返回左孩子位置
{
return 2*i;
}
int right(int i)//返回右孩子位置
{
return 2*i+1;
}
void max_heapify(int *a,int heap_size,int i)//保持堆性质,使以i为根的子树成为最大堆 ,heap_size当前堆中元素数量
{
//假设左右孩子已经分别为最大堆
//l,r分别为左右孩子的位置,largest用于临时存放当前节点与左右孩子中最大的节点的位置
int l,r,largest;
int temp;
l=left(i);
r=right(i);
if(l<=heap_size&&a[l]>a[i])//当做孩子大于父节点时,左孩子设为最大,否则父节点最大
largest=l;
else
largest=i;
if(r<=heap_size&&a[r]>a[largest])//继续判断,当右孩子大于最大时,右孩子设为最大,否则刚才的最大不变
largest=r;
if(largest!=i)//如果largest变化了,则通过交换使当前最大节点为父节点
{
temp=a[i];
a[i]=a[largest];
a[largest]=tem
算法入门--堆排序(最大堆,从小到大排序)
最新推荐文章于 2024-04-28 10:27:05 发布
本文介绍了一种排序算法——堆排序,详细阐述了如何建立最大堆并进行排序。通过示例代码展示了堆排序的过程,包括最大堆的构建、维护堆性质以及整个排序过程。最后,提供了用户输入数据进行排序的主函数,便于实践操作。
摘要由CSDN通过智能技术生成