BP神经网络 c++实现

本文详细介绍了如何使用C++编程实现BP神经网络,包括其反向传播算法和权重调整策略,旨在避免局部最优解,提高网络训练效果。
摘要由CSDN通过智能技术生成

BP神经网络是通过反向传播来逐渐修正层之间的权值和每个节点的阈值,可以通过学习率避免走入局部最优解。

#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <iostream>
#include <string.h>
#include <vector>
#include <math.h>

using namespace std;

#define LAYER    3        //三层神经网络
#define NUM      10       //每层的最多节点数

#define A        30.0
#define B        10.0     //A和B是S型函数的参数
#define ITERS    10000     //最大训练次数
#define LR       0.0013   //学习率
#define ERROR    0.1    //单个样本允许的误差

struct Data {
    vector<double> x;       //输入数据
    vector<double> y;       //输出数据
};

class BP{

public:

    void GetData(const vector<Data>);
    void Train();
    vector<double> ForeCast(const vector<double>);

private:

    void InitNetWork();         //初始化网络
    void GetNums();             //获取输入、输出和隐含层节点数
    void ForwardTransfer();     //正向传播子过程
    void ReverseTransfer(int);  //逆向传播子过程
    void CalcDelta(int);        //计算w和b的调整量
    void UpdateNetWork();       //更新权值和阀值
    double GetError(int);         //计算单个样本的误差
    double GetAccu();             //计算所有样本的精度
    double Sigmoid(const double);   //计算Sigmoid的值

private:
    int in_num;                 //输入层节点数
    
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值