一道比较阴间的级数题解答

今天晚上水课时候同学给发来一道十分阴间的题,
在这里插入图片描述
当然可能我这种菜鸡觉得阴间有些大佬觉得已经够简单了,但是我还是这么不要脸的发出来,也算水水活跃度

第一次写出来小错不断,这水博客时候又改了改,但是不免有错,所以如果有错请诸位大佬不吝赐教

这关键是里面那个乘积挺难处理的,下面处理一下

引理1

x 2 n + 1 − 1 = ( x − 1 ) ( x − α 1 ) ( x − α 2 ) . . . . ( x − α n − 1 ) = ( x − 1 ) ∏ k = 1 n ( x 2 − 2 x cos ⁡ 2 k π 2 n + 1 + 1 ) x^{2n+1}-1=(x-1)(x-\alpha_1)(x-\alpha_2)....(x-\alpha_{n-1})\\ =(x-1)\prod_{k=1}^{n}(x^2-2x\cos \frac{2k\pi}{2n+1}+1) x2n+11=(x1)(xα1)(xα2)....(xαn1)=(x1)k=1n(x22xcos2n+12kπ+1)
这个比较好证明,把复数根全求出来而后首位配对

同理
x 2 n − 1 = ( x − 1 ) ( x + 1 ) ∏ k = 1 n − 1 ( x 2 − 2 x cos ⁡ k π n ) x^{2n}-1=(x-1)(x+1)\prod_{k=1}^{n-1}(x^2-2x\cos \frac{k\pi}{n}) x2n1=(x1)(x+1)k=1n1(x22xcosnkπ)

引理2

cos ⁡ π 2 n + 1 cos ⁡ 2 π 2 n + 1 . . . . cos ⁡ n π 2 n + 1 = 1 2 n \cos\frac{\pi}{2n+1}\cos \frac{2\pi}{2n+1}....\cos \frac{n\pi}{2n+1}=\frac{1}{2^n} cos2n+1πcos2n+12π....cos2n+1nπ=2n1
引理1中带进去 x = − 1 x=-1 x=1
− 2 = ( − 2 ) ∏ k = 1 n ( 2 + 2 cos ⁡ 2 k π 2 n + 1 ) ⇒ 1 = ∏ k = 1 n ( 2 + 2 cos ⁡ 2 k π 2 n + 1 ) ⇒ 1 2 n = ∏ k = 1 n ( 1 + cos ⁡ 2 k π 2 n + 1 ) ⇒ ∏ k = 1 n cos ⁡ k π 2 n + 1 = 1 2 n -2=(-2)\prod_{k=1}^{n}(2+2\cos \frac{2k\pi}{2n+1})\Rightarrow \\1=\prod_{k=1}^{n}(2+2\cos \frac{2k\pi}{2n+1})\Rightarrow\\ \frac{1}{2^n}=\prod_{k=1}^{n}(1+\cos \frac{2k\pi}{2n+1})\Rightarrow\\ \prod_{k=1}^{n}\cos \frac{k\pi}{2n+1}=\frac{1}{2^n} 2=(2)k=1n(2+2cos2n+12kπ)1=k=1n(2+2cos2n+12kπ)2n1=k=1n(1+cos2n+12kπ)k=1ncos2n+1kπ=2n1
下面开始变形
∏ k = 1 2 n cos ⁡ k π 2 n + 1 = ∏ k = 1 n cos ⁡ k π 2 n + 1 ∏ k = n + 1 2 n cos ⁡ k π 2 n + 1 \prod_{k=1}^{2n}\cos \frac{k\pi}{2n+1}=\prod_{k=1}^{n}\cos \frac{k\pi}{2n+1}\prod_{k=n+1}^{2n}\cos \frac{k\pi}{2n+1} k=12ncos2n+1kπ=k=1ncos2n+1kπk=n+12ncos2n+1kπ
其中
∏ k = n + 1 2 n cos ⁡ k π 2 n + 1 = ∏ k = n + 1 2 n sin ⁡ ( π 2 − k π 2 n + 1 ) = sin ⁡ − π 4 n + 2 sin ⁡ − 3 π 4 n + 2 . . . sin ⁡ − ( 2 n + 1 ) π 4 n + 2 = ( − 1 ) n ∏ k = 1 n sin ⁡ ( 2 k − 1 ) π 4 n + 2 ⋅ sin ⁡ π 2 ⋅ ( − 1 ) \\\prod_{k=n+1}^{2n}\cos \frac{k\pi}{2n+1}=\prod_{k=n+1}^{2n}\sin (\frac{\pi}{2}-\frac{k\pi}{2n+1}) \\=\sin \frac{-\pi}{4n+2}\sin\frac{-3\pi}{4n+2}...\sin \frac{-(2n+1)\pi}{4n+2}\\=(-1)^n\prod_{k=1}^{n}\sin\frac{(2k-1)\pi}{4n+2}·\sin \frac{\pi}{2}·(-1) k=n+12ncos2n+1kπ=k=n+12nsin(2π2n+1kπ=sin4n+2πsin4n+23π...sin4n+2(2n+1)π=(1)nk=1nsin4n+2(2k1)πsin2π(1)
由引理1的做法
x 2 m + 1 = ∏ k = 1 n ( x 2 − 2 x cos ⁡ ( 2 k − 1 ) π 2 n + 1 + 1 ) x^{2m}+1=\prod_{k=1}^{n}(x^2-2x\cos\frac{(2k-1)\pi}{2n+1}+1) x2m+1=k=1n(x22xcos2n+1(2k1)π+1)
带入 x = 1 x=1 x=1
2 = ∏ k = 1 n ( 2 − 2 cos ⁡ ( 2 k − 1 ) π 2 n + 1 ) 1 2 n − 1 = ∏ k = 1 n ( 1 − ( 1 − 2 sin ⁡ 2 ( 2 k − 1 ) π 4 n + 2 ) ) 2=\prod_{k=1}^{n}(2-2\cos\frac{(2k-1)\pi}{2n+1})\\ \frac{1}{2^{n-1}}=\prod_{k=1}^{n}(1-(1-2\sin^2\frac{(2k-1)\pi}{4n+2})) 2=k=1n(22cos2n+1(2k1)π)2n11=k=1n(1(12sin24n+2(2k1)π))

下面就好弄了

参考书:丘砖

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值