一个非常naive的分数阶微积分介绍

本文以非数学专业但了解高数的读者为对象,简单介绍了分数阶微积分。通过不正式的描述帮助理解,推导了Jn+1f(x) = ∫0x Jnf(t)dt,并给出了Riemann–Liouville分数阶积分和导数的定义。
摘要由CSDN通过智能技术生成
一个非常naive的分数阶微积分介绍

日常水博客,网上这类资料不少,写一个也确实没有必要,但是既然我今天要水博客那就还是写一个,我默认这里读者是非数学专业但是学过高数的同学,因此可能里面一些说法或者观点在数学系同学看来会比较幼稚,如果诸位有什么比较好的建议,还望不吝赐教

我们先进行一些比较不怎么正式的描述,目的是利于理解。对于一个给定的函数 f ( x ) f(x) f(x),定义 J f ( x ) = ∫ 0 x f ( t ) d t Jf(x)=\int_{0}^{x}f(t)dt Jf(x)=0xf(t)dt这里就先看作找出 f ( x ) f(x) f(x)的一个原函数,一些资料比如wiki上把 J J J叫做积分算子,姑且看作给 f ( x ) f(x) f(x)来个积分,那么,我们有下面结论:

J 2 f ( x ) = ∫ 0 x ( x − t ) f ( t ) d t J^2f(x)=\int_0^x(x-t)f(t)dt J2f(x)=0x(xt)f(t)dt
证明显然,应该一般数分或者高数习题都会有,但是为了凑字数我还是给加上
J 2 f ( x ) = ∫ 0 x ( ∫ 0 t f ( k ) d k ) d t = t ∫ 0 t f ( k ) d k ∣ 0 x − ∫ 0 x t d ∫ 0 t f ( k ) d k = x ∫ 0 x f ( t ) d t − ∫ 0 x t f ( t ) d t J^2 f(x)=\int_0^x(\int_0^tf(k)dk)dt\\=t\int_0^tf(k)dk|_0^x-\int_0^xtd\int_0^tf(k)dk\\=x\int_0^xf(t)dt-\int_0^xtf(t)dt J2f(x)=0x(0tf(k)dk)dt=t0tf(k)dk0x0xtd0tf(k)dk=x0xf(t)dt0xtf(t)dt
我们可以归纳证明
J n f ( x ) = 1 ( n − 1 ) ! ∫ 0 x ( x − t ) n − 1 f ( t ) d t J^nf(x)=\frac{1}{(n-1)!}\int_0^x(x-t)^{n-1}f(t)dt Jnf(x)=(n1)!10x(xt)n1f(t)dt
显然
d 1 n ! ∫ 0 x ( x − t ) n f ( t ) d t d x = 1 ( n − 1 ) ! ∫ 0 x ( x − t ) ( n − 1 ) f ( t ) d t = J n f ( x ) \frac{d\frac{1}{n!}\int_0^x(x-t)^nf(t)dt}{dx}=\frac{1}{(n-1)!}\int_0^x(x-t)^{(n-1)}f(t)dt\\=J^{n}f(x) dxdn!10x(xt)nf(t)dt=(n1)!10x(xt)(n1)f(t)dt=Jnf(x)
于是
J n + 1 f ( x ) ∫ 0 x J n f ( t ) d t = ∫ 0 x d ( 1 n ! ∫ 0 t ( x − k ) n f ( k ) d k ) = 1 n ! ∫ 0 x ( x − t ) n f ( t ) d t J^{n+1}f(x)\int_0^xJ^nf(t)dt=\int_0^xd(\frac{1}{n!}\int_0^t(x-k)^nf(k)dk)\\=\frac{1}{n!}\int_0^x(x-t)^nf(t)dt Jn+1f(x)0xJnf(t)dt=0x

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值