10的0次方是什么

作者:半点闲
时间:2012-12-16 12:42
博客:blog.csdn.net/cg_i
邮箱:
b_dx@sohu.com
参考书籍:《程序员的数学

10的0次方是什么
  引:在10进制的说明中,我们讲过“1是100(10的0次方)”,即100 = 1。
  依然,记得我的中学老师在给我们教授“指数法则” 时讲过的话,也产生以下疑问:“102是“2个10相乘”,那么100不就是“0个10相乘”吗?这样的话,不应该是1,而是0吧?”
  对于,我这个即内向又较真的性格。虽然,心中充满了疑问。却羞于向顶着权威光环的老师提出质疑,看着身边的同学们坚定与自信的容样,内心不停的打鼓,甚至,怀疑自己的IQ,抱着这种“到底是1,还是0”的心理,我的数学课学的一塌糊涂。
  这个问题的核心在哪里呢?问题在于“10n是个n个10相乘”这部分。在说“n个10相乘”时,我们自然会把n相作1,2,3...。因此,在说“0个10相乘”时,却不知道应该如何理解它的意义。
  那么,暂且抛却“n个10相乘”这样的定义方式吧。
我们从目前掌握的知识来类推,看看如何定义100比较妥当。
  众所周知,103是1000,102是100,101是10。
  将这些等式放在一起,寻找它们的规律。
 
  每当10右上角的数字(指数)减1,数就变为原先的10分之1。因此,100就是1。综上所述,在定义10n(n包括0)的值时可以遵循以下规则:
  指数每减1,数字就变为原来的10分之1。

10-1是什么 

  不要将思维止步于100之处。对于10-1(10的-1次方),让我们同样套用这一规则(指数每减1,数字就变为原来的10分之1)。 
 
规则的扩展
  起初,我把n为1,2,3...时,即101,102,103...想作“1个10相乘”、“2个10相乘”、“3个10相乘”......
  然后,我抛却了“n个10相乘”的思维的,寻找到了一个扩展规则:对于10n,n每减1,就变成原来的10分之1。
  当n为0时,若套用“10n为n个10相乘”的规则,着实比较费解。于是我转而求助于“n每减1,就变成原来的10分之1的规则”,定义出100是1(因为101的10分之1就是1)。
  同样地,10-1,10-2,10-3...的值(即n为-1,-2,-3...时)也适用于这个扩展的规则。
  如此,对于所有的整数n(...,-3,-2,-1,0,1,2,3,...),都能定义10n的值。对于10-3来说,“-3个10相乘”的思维并一直观。但倘若套用扩展规则,即使n是负数,也能“定义出”10的n次方的值。

对n0进行思考
  在这里要强调的是,不要将n0的值作为一种知识去记忆,更需要考虑的是,如何对n0进行适当定义,以期让规则变得简单。这不是记忆力的问题,而是想象力的问题。请记住这种思维方式:以简化规则为目标去定义值

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页