HDU3622 二分几何+2-SAT

我还是单独把这个题拿出来写一下吧,都放在图论完备之旅里面不易看思路。

首先是2-SAT,看到每两个点里只能选一个能够比较容易的想到用2-SAT解吧。

然后是几何,关于半径的选取,二分的思路。(这地方刚开始没意识到用二分= =,几何里常见暴力二分呀)

2-SAT构图:

若      if(!cross(i,j,mid))  G[i].pb(j^1);

 总感觉现在还不能像这样把关键的矛盾冲突部分用几行代码写出来= =,自己老是写了各种条件判断。。。


贴个代码


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>

using namespace std;

#define clr(x) memset(x,0,sizeof(x))
#define fp1 freopen("in.txt","r",stdin)
#define fp2 freopen("out.txt","w",stdout)
#define pb push_back

#define INF 0x3c3c3c3c
typedef long long LL;

const int maxn=105*2;
int n, m, t;
vector<int> G[maxn*2];
bool mark[maxn*2];
int s[maxn*2], c;

bool dfs(int x)
{
    if(mark[x^1]) return false;
    if(mark[x]) return true;
    mark[x]=true;
    s[c++]=x;
    for(int i=0;i<G[x].size();i++)
        if(!dfs(G[x][i])) return false;
    return true;
}

void init()
{
    for(int i=0;i<n*2;i++)  G[i].clear();
    memset(mark,0,sizeof(mark));
}

void add(int x,int xval,int y,int yval)
{
    x=x*2+xval;
    y=y*2+yval;
    G[x^1].push_back(y);
    G[y^1].push_back(x);
}

bool solve()
{
    for(int i=0;i<n*2;i+=2)
        if(!mark[i]&&!mark[i+1]) {
            c=0;
            if(!dfs(i)) {
                while(c>0) mark[s[--c]]=false;
                if(!dfs(i+1)) return false;
            }
        }

    return true;
}
struct Point{
    double x, y;
}point[maxn];

double length(Point a, Point b){
  return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
int cross(int i, int j, double mid){
  if(length(point[i],point[j])>=4*mid*mid) return true;
  return false;
}
int judge(double mid){
    init();
    //printf("\n%.2lf~\n", mid);
    for(int i = 0;i < n*2;i++){
        //if(length(point[i],point[i^1]) < 4*mid*mid) {return false; }
        for(int j = 0;j < n*2;j++){
            if(j==(i^1) || j==i) {
                continue;
            }
            
            if(!cross(i,j,mid)) G[i].pb(j^1);   //关键代码!
        }
    }
    if(solve()) {
        return true;
    }
    else return false;
}

int main()
{
    //fp1;
    while(scanf("%d", &t) == 1){
        for(int i = 0;i < t*2;i+=2){
            scanf("%lf %lf %lf %lf", &point[i].x, &point[i].y, &point[i+1].x, &point[i+1].y);
        }
        n = t;
        double l = 0, r = 40000.0, mid = 0, ans;
        while(r-l>1e-4){
            double mid = (l+r)/2.0;
            if(judge(mid)) {
                ans = mid;
                l = mid;
            }
            else r = mid;
        }
        printf("%.2lf\n", l);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值