我还是单独把这个题拿出来写一下吧,都放在图论完备之旅里面不易看思路。
首先是2-SAT,看到每两个点里只能选一个能够比较容易的想到用2-SAT解吧。
然后是几何,关于半径的选取,二分的思路。(这地方刚开始没意识到用二分= =,几何里常见暴力二分呀)
2-SAT构图:
若 if(!cross(i,j,mid)) G[i].pb(j^1);
总感觉现在还不能像这样把关键的矛盾冲突部分用几行代码写出来= =,自己老是写了各种条件判断。。。
贴个代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
using namespace std;
#define clr(x) memset(x,0,sizeof(x))
#define fp1 freopen("in.txt","r",stdin)
#define fp2 freopen("out.txt","w",stdout)
#define pb push_back
#define INF 0x3c3c3c3c
typedef long long LL;
const int maxn=105*2;
int n, m, t;
vector<int> G[maxn*2];
bool mark[maxn*2];
int s[maxn*2], c;
bool dfs(int x)
{
if(mark[x^1]) return false;
if(mark[x]) return true;
mark[x]=true;
s[c++]=x;
for(int i=0;i<G[x].size();i++)
if(!dfs(G[x][i])) return false;
return true;
}
void init()
{
for(int i=0;i<n*2;i++) G[i].clear();
memset(mark,0,sizeof(mark));
}
void add(int x,int xval,int y,int yval)
{
x=x*2+xval;
y=y*2+yval;
G[x^1].push_back(y);
G[y^1].push_back(x);
}
bool solve()
{
for(int i=0;i<n*2;i+=2)
if(!mark[i]&&!mark[i+1]) {
c=0;
if(!dfs(i)) {
while(c>0) mark[s[--c]]=false;
if(!dfs(i+1)) return false;
}
}
return true;
}
struct Point{
double x, y;
}point[maxn];
double length(Point a, Point b){
return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
int cross(int i, int j, double mid){
if(length(point[i],point[j])>=4*mid*mid) return true;
return false;
}
int judge(double mid){
init();
//printf("\n%.2lf~\n", mid);
for(int i = 0;i < n*2;i++){
//if(length(point[i],point[i^1]) < 4*mid*mid) {return false; }
for(int j = 0;j < n*2;j++){
if(j==(i^1) || j==i) {
continue;
}
if(!cross(i,j,mid)) G[i].pb(j^1); //关键代码!
}
}
if(solve()) {
return true;
}
else return false;
}
int main()
{
//fp1;
while(scanf("%d", &t) == 1){
for(int i = 0;i < t*2;i+=2){
scanf("%lf %lf %lf %lf", &point[i].x, &point[i].y, &point[i+1].x, &point[i+1].y);
}
n = t;
double l = 0, r = 40000.0, mid = 0, ans;
while(r-l>1e-4){
double mid = (l+r)/2.0;
if(judge(mid)) {
ans = mid;
l = mid;
}
else r = mid;
}
printf("%.2lf\n", l);
}
return 0;
}