小凯的数字

这是一道水题

首先一个数学常识:一个数各个数位上的数字之和对9取模的结果即为该数字对9取模的结果。
所以引申一下就是:将当前数字任意切分,求和得到的数,对于9取模的结果,即为当前数字对9取模的结果。
这个结果,应当很好证明,我就不证明了。
所以,有了这个结论,我们就可以秒解这道题。
用一个等差数列求和公式,如果怕乘法爆longlong,可以边乘边取模,然后手动求一下2在模9下的逆元,很好想,5就够了。
所以就可以愉快地计算了。
代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long inv=5;
int q;
long long l,r;
int main(){
	scanf("%d",&q);
	while(q--){
		scanf("%lld%lld",&l,&r);
		int ans=(l+r)%9*(r-l+1)%9*inv%9;
		printf("%d\n",ans);
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值