首先一个数学常识:一个数各个数位上的数字之和对9取模的结果即为该数字对9取模的结果。
所以引申一下就是:将当前数字任意切分,求和得到的数,对于9取模的结果,即为当前数字对9取模的结果。
这个结果,应当很好证明,我就不证明了。
所以,有了这个结论,我们就可以秒解这道题。
用一个等差数列求和公式,如果怕乘法爆longlong,可以边乘边取模,然后手动求一下2在模9下的逆元,很好想,5就够了。
所以就可以愉快地计算了。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long inv=5;
int q;
long long l,r;
int main(){
scanf("%d",&q);
while(q--){
scanf("%lld%lld",&l,&r);
int ans=(l+r)%9*(r-l+1)%9*inv%9;
printf("%d\n",ans);
}
return 0;
}