本周主要学习递推算法
1、
题目:
给出正整数 n,要求按如下方式构造数列:
只有一个数字 n 的数列是一个合法的数列。
在一个合法的数列的末尾加入一个正整数,但是这个正整数不能超过该数列最后一项的一半,可以得到一个新的合法数列。请你求出,一共有多少个合法的数列。两个合法数列 a,b 不同当且仅当两数列长度不同或存在一个正整数 i≤∣a∣,使得ai≠bi。输入只有一行一个整数,表示 n。输出一行一个整数,表示合法的数列个数。
思路:列出前几项
1:结果为1
2: 2。 2,1。 结果为2
3: 3。 3,1。 结果为2
4: 4。 4,2。 4,1。 4,2,1。结果为4
5: 5。 5,2。 5,1。 5,2,1。 结果为4
6:结果为6
7:结果为6
8和9:结果为10
10和11:结果为14
由此可见,如果n为奇数则f(n)=f(n-1)如果n为偶数则f(n)=f(n-1)+f(n/2)。
# include <bits/stdc++.h>
using namespace std;
int main()
{
int n,f[1010];
f[0]=1;
f[1]=1;
scanf("%d",&n);
for(int a=2;a<=n;a++)
{
if(a%2==0) f[a]=f[a-1]+f[a/2];
else f[a]=f[a-1];
}
printf("%d",f[n]);
return 0;
}
2、
题目:有 N 级台阶,你一开始在底部,每次可以向上迈 1∼K 级台阶,问到达第 N 级台阶有多少种不同方式。两个正整数N,K。一个正整数 ans(mod100003),为到达第 N 级台阶的不同方式数。
思路:如果k=2,那么如果到第n级台阶,只能从n-1和n-2上去所以f(n)=f(n-1)+f(n-2)+.........f(n-k)然后再对100003取模即可
int num[1000005]={0};
int main()
{
scanf("%d %d",&n,&k);
num[0]=1;
num[1]=1;
if(k==1) {num[2]=1; num[3]=1;printf("1");return 0;}
else if(k>=2) {num[2]=2;}
for(int i=3;i<=n;i++)
{
for(int a=i-1;a>=max(i-k,0);a--)
{
num[i]+=num[a];
num[i]%=100003;
}
}
printf("%d",num[n]%100003);
return 0;
}
3、
题目:
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。
栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。
栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。
题目描述
宁宁考虑的是这样一个问题:一个操作数序列,1,2,…,n(图示为 1 到 3 的情况),栈 A 的深度大于 n。
现在可以进行两种操作,
- 将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
- 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 1 2 3
生成序列 2 3 1
的过程。
(原始状态如上图所示)
你的程序将对给定的 n,计算并输出由操作数序列 1,2,…,n 经过操作可能得到的输出序列的总数。
输入格式
输入文件只含一个整数 n(1≤n≤18)。
输出格式
输出文件只有一行,即可能输出序列的总数目。
思路:
n为1时,结果为1
n为2时,结果为2
n为3时,结果为5
n为4时,结果为14
n为5时,结果为42
很明显是卡特兰数,具体可看「算法入门笔记」卡特兰数 - 知乎 (zhihu.com)
可以得到公式f(n)=f(n-1)*(4n-2)/(n+1)
# include <bits/stdc++.h>
using namespace std;
//数据太大,只用算一轮,直接递推函数,用long long
long long f(long long n)
{
if(n==1||n==0) return 1;
else return f(n-1)*(4*n-2)/(n+1);
}
int main()
{
int n;
scanf("%d",&n);
printf("%lld",f(n));
return 0;
}
4、
题目:
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 n 张地毯,编号从 1 到 n。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。输入共 n+2 行。第一行,一个整数 n,表示总共有 n 张地毯。接下来的 n 行中,第i+1 行表示编号 i 的地毯的信息,包含四个整数 a,b,g,k,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b) 以及地毯在 x 轴和 y 轴方向的长度。第 n+2 行包含两个整数 x 和 y,表示所求的地面的点的坐标 (x,y)。输出共 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出 -1
。
思路:
算出地毯覆盖的范围(x的范围和y的范围),如果那个点的x和y都在范围中,当前地毯的编号就是answer,遍历所有地毯即可
# include <bits/stdc++.h>
using namespace std;
int main()
{
int n,x,y,ans;
scanf("%d",&n);
int a[n],b[n],c[n],d[n];
for(int e=0;e<n;e++)
{
scanf("%d %d %d %d",&a[e],&b[e],&c[e],&d[e]);
}
scanf("%d %d",&x,&y);
for(int f=0;f<n;f++)
{
if(x>=a[f]&&x<=a[f]+c[f]&&y>=b[f]&&y<=b[f]+d[f])
ans=f;
}
printf("%d",ans+1);
return 0;
}