探索LangChain中的RunnableLambdas:如何高效运行自定义函数

# 探索LangChain中的RunnableLambdas:如何高效运行自定义函数

## 引言

在构建复杂的AI应用程序时,您可能需要自定义功能来处理独特的需求。在LangChain中,您可以通过创建RunnableLambdas来实现这一点。本指南将帮助您理解如何使用RunnableLambdas,以及如何处理自定义逻辑。此外,我们还将探讨如何将这些函数整合到链式结构中。

## 主要内容

### 创建可运行对象

#### 使用RunnableLambda构造函数

通过显式使用`RunnableLambda`构造函数,您可以将自定义函数包装为可运行对象。这对于格式化或实现其他LangChain组件未提供的功能非常有用。

```python
from langchain_core.runnables import RunnableLambda

def length_function(text):
    return len(text)

wrapped_function = RunnableLambda(length_function)

使用@chain装饰器

您还可以通过在自定义函数上添加@chain装饰器,将任意函数转换为可运行对象。

from langchain_core.runnables import chain

@chain
def custom_chain(text):
    # 自定义链式逻辑
    return text.upper()

自动类型转换

在链式结构中,您可以利用自动类型转换,无需显式包装为RunnableLambda。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值