引言
在当今信息过载的时代,能够快速有效地总结大量文档(如PDF、Notion页面、客户问答等)变得尤为重要。大语言模型(LLMs)因其卓越的文本理解和合成能力,成为实现此目标的理想工具。在检索增强生成(RAG)中,文本摘要能够帮助从大量检索的文档中提炼信息,为LLM提供上下文。在本文中,我们将探讨如何使用LLM对多个文档内容进行总结。
主要内容
使用语言模型
大语言模型能够理解复杂的文字并进行内容总结。本指南将展示如何利用这些模型实现自动化文档摘要。
使用文档加载器
我们将使用WebBaseLoader
从HTML网页加载内容。这是一种高效的文档加载方法,可用于提取网络内容。
三种总结方法
- Stuff:将所有文档串联成一个提示传递给LLM。
- Map-Reduce:将文档拆分成批次,分别总结,然后再总结这些摘要。
- Refine:通过迭代更新滚动摘要实现总结。
代码示例
下面是一个完整的代码示例,演示如何使用langchain
库进行文档总结。
# 安装必要的库
%pip install langchain