二级缓存
- EHCache是一个快速的、轻量级的、易于使用的、进程内的缓存。它支持read-only和read/write缓存,内存和磁盘缓存。但是不支持集群(Clustering)。
- OSCache是另外一个开源的缓存方案。它同时还支持JSP页面或任意对象的缓存。OSCache功能强大、灵活,和EHCache一样支持read-only和read/write缓存、支持内存和磁盘缓存。同时,它还提供通过JGroups或JMS进行集群的基本支持。
- SwarmCache 是一个简单的、基于JavaGroups提供集群的缓存方案。支持read-only和nonstrict read/write缓存。这种缓存适用于读操作远远高于写操作频率的应用。
- JBoss TreeCache 是一个强大的、可复制(同步或异步)和支持事务的缓存。如果你需要一个真正的支持事务的缓存架构,使用这个方案吧。
EHCache的使用场合
1比较少更新表数据
EhCache一般要使用在比较少执行write操作的表(包括update,insert,delete等)[Hibernate的二级缓存也都是这样];
2 对并发要求不是很严格的情况
两台机子中的缓存是不能实时同步的;
Ehcache的类层次模型
主要为三层,最上层的是CacheManager,他是操作Ehcache的入口。我们可以通过CacheManager.getInstance()获得一个单子的CacheManger,或者通过CacheManger的构造函数创建 一个新的CacheManger。每个CacheManager都管理着多个Cache。而每个Cache都以一种类Hash的方式,关联着多个Element。Element则是我们用于存放要缓存内容的地方。
Hibernate的二级缓存策略的一般过程如下
1条件查询的时候,总是发出一条select * from table_name where .... (选择所有字段)这样的SQL语句查询数据库,一次获得所有的数据对象。
2 把获得的所有数据对象根据ID放入到第二级缓存中。
3 当Hibernate根据ID访问数据对象的时候,首先从Session一级缓存中查;查不到,如果配置了二级缓存,那么从二级缓存中查;查不到,再查询数据库,把结果按照ID放入到缓存。
4 删除、更新、增加数据的时候,同时更新缓存。
Hibernate的二级缓存策略,是针对于ID查询的缓存策略,对于条件查询则毫无作用。为此,Hibernate提供了针对条件查询的Query Cache。
没有分布式缓存需求的配置:
1.先下载ehcache的jar包。
最新版本: ehcache-1.4 released。
解压后,有几个文件:
ehcache-1.4.0.jar:需要将它放置到WEB-INF/lib下
ehcache-1.4.0-remote-debugger.jar:不要发布到工程中,是用来调试和监控你的cache状况的
ehcache-1.4.0-sources.jar:源代码
ehcache.xml :重要的配置文件,需要复制到classpath下 。
2.ehcach.xml配置文件主要参数的解释,其实文件里有详细的英文注释//DiskStore 配置,cache文件的存放目录 ,主要的值有
* user.home - 用户主目录
* user.dir - 用户当前的工作目录
* java.io.tmpdir - Default temp file path默认的temp文件目录
范例
1、首先设置EhCache,建立配置文件ehcache.XML,默认的位置在class-path,可以放到你的src目录下: |
<?xml version="1.0" encoding="UTF-8"?> <ehcache> <diskStore path="Java.io.tmpdir"/> <defaultCache maxElementsInMemory="10000" <! eternal="false" <! overflowToDisk="true" <! timeToIdleSeconds="300" <! timeToLiveSeconds="180" <! diskPersistent="false" diskExpiryThreadIntervalSeconds= "120"/> </ehcache> |
2、在Hibernate配置文件中设置:
<! <property name="cache.provider_class">org.hibernate.cache.EhCacheProvider</property> <! <property name="hibernate.cache.use_query_cache">true</property> |
说明一下:如果不设置"查询缓存",那么hibernate只会缓存使用load()方法获得的单个持久化对象,如果想缓存使用findall()、list()、Iterator()、createCriteria()、createQuery()等方法获得的数据结果集的话,就需要设置hibernate.cache.use_query_cache true才行。
3、在Hbm.xml文件中在其<set></set>中添加<cache usage="read-only"/>
4、如果需要"查询缓存",还需要在使用Query或Criteria()时设置其setCacheable(true);属性
5、创建DAO,内容如下:
Session s = HibernateSessionFactory.getSession(); Criteria c = s.createCriteria(Xyz.class); c.setCacheable(true);//这句必须要有 System.out.println("第一次读取"); List l = c.list(); System.out.println(l.size()); HibernateSessionFactory.closeSession(); s = HibernateSessionFactory.getSession(); c = s.createCriteria(Xyz.class); c.setCacheable(true);//这句必须要有 System.out.println("第二次读取"); l = c.list(); System.out.println(l.size()); HibernateSessionFactory.closeSession(); | |
6、这时你会看到打印出来的信息为(表示第二次并没有去读库): 第一次读取 Hibernate: ***** 13 第二次读取 13 首页的页面缓存 一个网站的首页估计是被访问的次数最多的,我们可以考虑给首页做一个页面缓存 缓存策略:我认为应该是某个固定时间之内不变的,比如说2分钟更新一次,以应用结构page-filter-action-service-dao-db为例。 位置:页面缓存做到尽量靠近客户的地方,就是在page和filter之间 ,这样的优点就是第一个用户请求之后,页面被缓存,第二个用户再来请求的时候,走到filter这个请求就结束了,无需再走后面的action-service-dao-db。带来的好处是服务器压力的减低和客户段页面响应速度的加快。 <cache name="SimplePageCachingFilter" maxElementsInMemory="10" maxElementsOnDisk="10" eternal="false" overflowToDisk="true" diskSpoolBufferSizeMB="20" timeToIdleSeconds="10" timeToLiveSeconds="10"
memoryStoreEvictionPolicy="LFU" /> 接着我们来看一下SimplePageCachingFilter的配置, <filter> <filter-name>indexCacheFilterfilter-name> <filter-class> net.sf.ehcache.constructs.web.filter.SimplePageCachingFilter filter-class> filter> <filter-mapping> <filter-name>indexCacheFilter<filter-name> <url-pattern>*index.action<url-pattern> filter-mapping> 就只需要这么多步骤,我们就可以给某个页面做一个缓存的,把上面这段配置放到你的web.xml中,那么当你打开首页的时候,你会发现,2分钟才会有一堆sql语句出现在控制台上。 cachefilter中还有一个特性,就是gzip,也就是说缓存中的元素是被压缩过的,如果客户浏览器支持压缩的话,filter会直接返回压缩过的流,这样节省了带宽,把解压的工作交给了客户浏览器,如果客户的浏览器不支持gzip,那么filter会把缓存的元素拿出来解压后再返回给客户浏览器(大多数爬虫是不支持gzip的,所以filter也会解压后再返回流),这样做的优点是节省带宽,缺点就是增加了客户浏览器的负担。
Ehcache的三种清空策略 1 FIFO,first in first out,这个是大家最熟的,先进先出。 2 LFU, Less Frequently Used,就是上面例子中使用的策略,直白一点就是讲一直以来最少被使用的。如上面所讲,缓存的元素有一个hit属性,hit值最小的将会被清出缓存。 3 LRU,Least Recently Used,最近最少使用的,缓存的元素有一个时间戳,当缓存容量满了,而又需要腾出地方来缓存新的元素的时候,那么现有缓存元素中时间戳离当前时间最远的元素将被清出缓存。 |