nacos 负载均衡算法 解析

这篇文章,就带大家从源码层面分析一下,Nacos客户端采用了如何的算法来从实例列表中获取一个实例进行请求的。也可以称作是Nacos客户端的负载均衡算法。

单个实例获取

地址: com.alibaba.nacos.api.naming.NamingService#selectOneHealthyInstance(java.lang.String)

    /**
     * Select one healthy instance of service using predefined load balance strategy.
     *  见名知意 
     * 使用预定义的负载平衡策略选择一个健康的服务实例。
     *
     * @param serviceName name of service
     * @return qualified instance
     * @throws NacosException nacos exception
     */
    Instance selectOneHealthyInstance(String serviceName) throws NacosException;

该方法会根据预定义的负载算法,从实例列表中获得一个健康的实例。其他重载的方法功能类似,最终都会调用该方法,我们就以此方法为例来分析一下具体的算法。

具体的实现代码:

 public Instance selectOneHealthyInstance(String serviceName, String groupName, List<String> clusters,
            boolean subscribe) throws NacosException {
        String clusterString = StringUtils.join(clusters, ",");
        if (subscribe) {
            // 获取ServiceInfo
            ServiceInfo serviceInfo = serviceInfoHolder.getServiceInfo(serviceName, groupName, clusterString);
            if (null == serviceInfo) {
                serviceInfo = clientProxy.subscribe(serviceName, groupName, clusterString);
            }
            // 通过负载均衡算法获得其中一个实例
            return Balancer.RandomByWeight.selectHost(serviceInfo);
        } else {
            // 获取ServiceInfo
            ServiceInfo serviceInfo = clientProxy
                    .queryInstancesOfService(serviceName, groupName, clusterString, 0, false);
            // 通过负载均衡算法获得其中一个实例
            return Balancer.RandomByWeight.selectHost(serviceInfo);
        }
    }

selectOneHealthyInstance方法逻辑很简单,调用我们之前讲到的方法获取ServiceInfo对象,然后作为参数传递给负载均衡算法,由负载均衡算法计算出最终使用哪个实例(Instance)。

算法参数封装

可以看到 真正的负载均衡是 Balancer.RandomByWeight.selectHost(serviceInfo)方法,从这里开始分析

  /**
         * Random select one instance from service.
         *  说是随机取 但是是和权重挂钩的
         * @param dom service
         * @return random instance
         */
        public static Instance selectHost(ServiceInfo dom) {
            
            // ServiceInfo中获去实例列表
            List<Instance> hosts = selectAll(dom);
            
            if (CollectionUtils.isEmpty(hosts)) {
                throw new IllegalStateException("no host to srv for service: " + dom.getName());
            }
            
            return getHostByRandomWeight(hosts);
        }
    }

selectHost方法核心逻辑是从ServiceInfo中获取实例列表,然后调用getHostByRandomWeight方法:


  /**
     * Return one host from the host list by random-weight.
     * 按随机权重从主机列表中返回一个主机。
     *
     * @param hosts The list of the host.
     * @return The random-weight result of the host
     */
    protected static Instance getHostByRandomWeight(List<Instance> hosts) {
        NAMING_LOGGER.debug("entry randomWithWeight");
        if (hosts == null || hosts.size() == 0) {
            NAMING_LOGGER.debug("hosts == null || hosts.size() == 0");
            return null;
        }
        NAMING_LOGGER.debug("new Chooser");
        // ... 判断逻辑
        // 重新组织数据格式
        List<Pair<Instance>> hostsWithWeight = new ArrayList<Pair<Instance>>();
        for (Instance host : hosts) {
            if (host.isHealthy()) {
                hostsWithWeight.add(new Pair<Instance>(host, host.getWeight()));
            }
        }
        NAMING_LOGGER.debug("for (Host host : hosts)");
        // 通过Chooser来实现随机权重负载均衡算法
        Chooser<String, Instance> vipChooser = new Chooser<String, Instance>("www.taobao.com");
        //refresh方法用于筛选数据、检查数据合法性和建立算法所需数据模型。
        vipChooser.refresh(hostsWithWeight);
        NAMING_LOGGER.debug("vipChooser.refresh");
        return vipChooser.randomWithWeight();
    }

getHostByRandomWeight前半部分是将Instance列表及其中的权重数据进行转换,封装成一个Pair,也就是建立成对的关系。在此过程中只使用了健康的节点。
真正的算法实现则是通过Chooser类来实现的,看名字基本上知道实现的策略是基于权重的随机算法

负载均衡算法实现

所有的负载均衡算法实现均位于Chooser类中,Chooser类的提供了两个方法refresh和randomWithWeight。
refresh方法用于筛选数据、检查数据合法性和建立算法所需数据模型。
randomWithWeight方法基于前面的数据来进行随机算法处理。
先看refresh方法:

public void refresh(List<Pair<T>> itemsWithWeight) {
    Ref<T> newRef = new Ref<T>(itemsWithWeight);
    // 准备数据,检查数据
    newRef.refresh();
    // 上面数据刷新之后,这里重新初始化一个GenericPoller
    newRef.poller = this.ref.poller.refresh(newRef.items);
    this.ref = newRef;
}

基本步骤:

创建Ref类,该类为Chooser的内部类;
调用Ref的refresh方法,用于准备数据、检查数据等;
数据筛选完成,调用poller#refresh方法,本质上就是创建一个GenericPoller对象;
成员变量重新赋值;

这里重点看Ref#refresh方法:

/**
 * 获取参与计算的实例列表、计算递增数组数总和并进行检查
 */
public void refresh() {
    // 实例权重总和
    Double originWeightSum = (double) 0;
    
    // 所有健康权重求和
    for (Pair<T> item : itemsWithWeight) {
        
        double weight = item.weight();
        //ignore item which weight is zero.see test_randomWithWeight_weight0 in ChooserTest
        // 权重小于等于0则不参与计算
        if (weight <= 0) {
            continue;
        }
        // 有效实例放入列表
        items.add(item.item());
        // 如果值无限大
        if (Double.isInfinite(weight)) {
            weight = 10000.0D;
        }
        // 如果值为非数字
        if (Double.isNaN(weight)) {
            weight = 1.0D;
        }
        // 权重值累加
        originWeightSum += weight;
    }
    
    double[] exactWeights = new double[items.size()];
    int index = 0;
    // 计算每个节点权重占比,放入数组
    for (Pair<T> item : itemsWithWeight) {
        double singleWeight = item.weight();
        //ignore item which weight is zero.see test_randomWithWeight_weight0 in ChooserTest
        if (singleWeight <= 0) {
            continue;
        }
        // 计算每个节点权重占比
        exactWeights[index++] = singleWeight / originWeightSum;
    }
    
    // 初始化递增数组
    weights = new double[items.size()];
    double randomRange = 0D;
    for (int i = 0; i < index; i++) {
        // 递增数组第i项值为items前i个值总和
        weights[i] = randomRange + exactWeights[i];
        randomRange += exactWeights[i];
    }
    
    double doublePrecisionDelta = 0.0001;
    // index遍历完则返回;
    // 或weights最后一位值与1相比,误差小于0.0001,则返回
    if (index == 0 || (Math.abs(weights[index - 1] - 1) < doublePrecisionDelta)) {
        return;
    }
    throw new IllegalStateException(
            "Cumulative Weight calculate wrong , the sum of probabilities does not equals 1.");
}

可结合上面代码中的注释来理解,核心步骤包括以下:

遍历itemsWithWeight,计算权重总和数据;非健康节点会被剔除掉;
计算每个节点的权重值在总权重值中的占比,并存储在exactWeights数组当中;
将exactWeights数组当中值进行数据重构,形成一个递增数组weights(每个值都是exactWeights坐标值的总和),后面用于随机算法;
判断是否循环完成或误差在指定范围内(0.0001),符合则返回。

所有数据准备完成,调用随机算法方法randomWithWeight:

public T randomWithWeight() {
    Ref<T> ref = this.ref;
    // 生成0-1之间的随机数
    double random = ThreadLocalRandom.current().nextDouble(0, 1);
    // 采用二分法查找数组中指定值,如果不存在则返回(-(插入点) - 1),插入点即随机数将要插入数组的位置,即第一个大于此键的元素索引。
    int index = Arrays.binarySearch(ref.weights, random);
    // 如果没有查询到(返回-1或"-插入点")
    if (index < 0) {
        index = -index - 1;
    } else {
        // 命中直接返回结果
        return ref.items.get(index);
    }
    
    // 判断坐标未越界
    if (index < ref.weights.length) {
        // 随机数小于指定坐标的数值,则返回坐标值
        if (random < ref.weights[index]) {
            return ref.items.get(index);
        }
    }
    
    // 此种情况不应该发生,但如果发生则返回最后一个位置的值
    /* This should never happen, but it ensures we will return a correct
     * object in case there is some floating point inequality problem
     * wrt the cumulative probabilities. */
    return ref.items.get(ref.items.size() - 1);
}

该方法的基本操作如下:

生成一个0-1的随机数;
使用Arrays#binarySearch在数组中进行查找,也就是二分查找法。该方法会返回包含key的值,如果没有则会返回”-1“或”-插入点“,插入点即随机数将要插入数组的位置,即第一个大于此键的元素索引。
如果命中则直接返回;如果未命中则对返回值取反减1,获得index值;
判断index值,符合条件,则返回结果;

至此,关于Nacos客户端实例获取的负载均衡算法代码层面追踪完毕。

算法实例演示

下面用一个实例来演示一下,该算法中涉及的数据变化。为了数据美观,这里采用4组数据,每组数据进来确保能被整除;

节点及权重数据(前面节点,后面权重)如下:

1 100
2 25
3 75
4 200

第一步,计算权重综合:
1 originWeightSum = 100 + 25 + 75 + 200 = 400

第二步,计算每个节点权重比:
2 exactWeights = {0.25, 0.0625, 0.1875, 0.5}

第三步,计算递增数组weights:
3 weights = {0.25, 0.3125, 0.5, 1}

第四步,生成0-1的随机数:
4 random = 0.3049980013493817

第五步,调用Arrays#binarySearch从weights中搜索random:
5  index = -2

关于Arrays#binarySearch(double[] a, double key)方法这里再解释一下,如果传入的key恰好在数组中,比如1,则返回的index为3;如果key为上面的random值,则先找到插入点,取反,减一。
插入点即第一个大于此key的元素索引,那么上面第一个大于0.3049980013493817的值为0.3125,那么插入点值为1;
于是按照公式计算Arrays#binarySearch返回的index为:
index = - ( 1 ) - 1 = -2

第六步,也就是没有恰好命中的情况:
index = -( -2 ) - 1 = 1
然后判断index是否越界,很明显 1 < 4,未越界,则返回坐标为1的值。

以上案例 我们就可以在com.alibaba.nacos.client.naming.core.Balancer 类中写一个demo 这样有助于我们debug 查看数据变化 了解和学习这个负载均衡策略

 public static void main(String[] args) {
//1 100
//2 25
//3 75
//4 200
        List<Pair<Instance>> hostsWithWeight = new ArrayList<Pair<Instance>>();
        Instance host1 = new Instance();
        host1.setClusterName("cehsi1");
        host1.setWeight(100);
        hostsWithWeight.add(new Pair<Instance>(host1, host1.getWeight()));

        Instance host2 = new Instance();
        host2.setClusterName("cehsi2");
        host2.setWeight(25);
        hostsWithWeight.add(new Pair<Instance>(host2, host2.getWeight()));

        Instance host3 = new Instance();
        host3.setClusterName("cehsi3");
        host3.setWeight(75);
        hostsWithWeight.add(new Pair<Instance>(host3, host3.getWeight()));

        Instance host4 = new Instance();
        host4.setClusterName("cehsi4");
        host4.setWeight(200);
        hostsWithWeight.add(new Pair<Instance>(host4, host4.getWeight()));
        // 通过Chooser来实现随机权重负载均衡算法
        Chooser<String, Instance> vipChooser = new Chooser<String, Instance>("www.taobao.com");
        //refresh方法用于筛选数据、检查数据合法性和建立算法所需数据模型。
        vipChooser.refresh(hostsWithWeight);
        Instance instance = vipChooser.randomWithWeight();
    }

算法的核心

上面演示了算法,但这个算法真的能够做到按权重负载吗?我们来分析一下这个问题。

这个问题的重点不在random值,这个值基本上是随机的,那么怎么保证权重大的节点获得的机会更多呢?

这里先把递增数组weights用另外一个形式来表示:

在这里插入图片描述
第一次看 可能看不懂这个逻辑 下面简单叙述一下
案例中 我们设置了四个 实例 通过计算 算出 每个实例在总权重中的比例 遮这样 通过一个在 0~1 之间的随机数 ,看这个随机数在哪一个模块 就取哪个模块的所对应的实例
实例一 0~0.25
实例二 0.25 ~ 0.3125
实例三 0.315 ~ 0.5
实例四 0.5 ~ 1

Arrays#binarySearch算法的插入点获取的是第一个大于key(也就是random)的坐标,也就是说每个节点享有的随机范围不同,它们的范围由当前点和前一个点的区间决定,而这个区间正好是权重比值。
权重比值大的节点,占有的区间就比较多,比如节点1占了1/4,节点4占了1/2。这样,如果随机数是均匀分布的,那么占有范围比较大的节点更容易获得青睐。也就达到了按照权重获得被调用的机会了。

本篇文章追踪Nacos客户端源码,分析了从实例列表中获得其中一个实例的算法,也就是随机权重负载均衡算法。整体业务逻辑比较简单,从ServiceInfo中获得实例列表,一路筛选,选中目标实例,然后根据它们的权重进行二次处理,数据结构封装,最后基于Arrays#binarySearch提供的二分查找法来获得对应的实例。
而我们需要注意和学习的重点便是权重获取算法的思想及具体实现,最终达到能够在实践中进行运用。

这种负载均衡 或者说概率算法 不是很复杂 算法思虑很简单 ,但是,我们可以学习这些大佬是怎么实现这种思路的, 例如 Arrays#binarySearch 方法,二分法搜索 大家可以了解一下二分法的实现原理 等等
这种算法可以适用于他场景 比如 抽奖 类型

参考文档:

Nacos客户端是如何实现实例获取的负载均衡呢?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值