一、MySQL索引机制概述
索引是什么 : 索引就是用来帮助表快速检索目标数据的
1.1、MySQL索引的创建方式
- ①使用CREATE语句创建
CREATE INDEX indexName ON tableName (columnName(length) [ASC|DESC]);
这种创建方式可以给一张已存在的表结构添加索引,其中需要指定几个值:
indexName
:当前创建的索引,创建成功后叫啥名字。tableName
:要在哪张表上创建一个索引,这里指定表名。columnName
:要为表中的哪个字段创建索引,这里指定字段名。length
:如果字段存储的值过长,选用值的前多少个字符创建索引。ASC|DESC
:指定索引的排序方式,ASC
是升序,DESC
是降序,默认ASC
。
当然,上述语句中的INDEX
也可更改为KEY
,作用都是创建一个普通索引,而对于其他的索引类型,这点在后续的索引分类中再聊。
- ②使用ALTER
语句创建
ALTER TABLE tableName ADD INDEX indexName(columnName(length) [ASC|DESC]);
这里的参数都相同,所以不再重复赘述。
- ③建表时DDL
语句中创建
CREATE TABLE tableName(
columnName1 INT(8) NOT NULL,
columnName2 ....,
.....,
INDEX [indexName] (columnName(length))
);
这种方式就比较适合在库表设计时,已经确定了索引项的情况下建立。
1.2、查询、删除、指定索引
但不管通过哪种方式建立索引,本质上创建的索引都是相同的,当索引创建完成后,可通过SHOW INDEX FROM tableName;
这条命令查询一个表中拥有的索引,如下:
CREATE TABLE `zz_user` (
`user_id` int(8) NOT NULL AUTO_INCREMENT,
`user_name` varchar(255) NULL DEFAULT "",
`user_sex` varchar(255) NULL DEFAULT "",
`user_phone` varchar(255) NULL DEFAULT "",
PRIMARY KEY (`user_id`) USING BTREE
)
ENGINE = InnoDB
CHARACTER SET = utf8
COLLATE = utf8_general_ci
ROW_FORMAT = Compact;
在上述的建表SQL
中,为user_id
创建了一个主键索引,然后来查一下当前表的索引信息:
简单的概述一下查询后,每个字段的含义:
- ①
Table
:当前索引属于那张表。 - ②
Non_unique
:目前索引是否属于唯一索引,0
代表是的,1
代表不是。 - ③
Key_name
:当前索引的名字。 - ④
Seq_in_index
:如果当前是联合索引,目前字段在联合索引中排第几个。 - ⑤
Column_name
:当前索引是位于哪个字段上建立的。 - ⑥
Collation
:字段值以什么方式存储在索引中,A
表示有序存储,NULL
表无序。 - ⑦
Cardinality
:当前索引的散列程度,也就是索引中存储了多少个不同的值。 - ⑧
Sub_part
:当前索引使用了字段值的多少个字符建立,NULL
表示全部。 - ⑨
Packed
:表示索引在存储字段值时,以什么方式压缩,NULL
表示未压缩, - ⑩
Null
:当前作为索引字段的值中,是否存在NULL
值,YES
表示存在。 - ⑪
Index_type
:当前索引的结构(BTREE, FULLTEXT, HASH, RTREE
)。 - ⑫
Comment
:创建索引时,是否对索引有备注信息。
这条命令在后续排除问题、性能调优时,会有不小的作用,比如可以通过分析其中的Cardinality
字段值,如果该值少于数据的实际行数,那目前索引有可能失效。
在MySQL
中并未提供修改索引的命令,也就说当你建错了索引,只能先删再重新建立一次,删除索引的语句如下:
DROP INDEX indexName ON tableName;
当然,当建立了一条索引后,也可以强制性的为SELECT
语句指定索引,如下:
SELECT * FROM table_name FORCE INDEX(index_name) WHERE .....;
FORCE INDEX
关键字可以为一条查询语句强制指定走哪个索引查询,但要牢记的是:如果当前的查询SQL
压根不会走指定的索引字段,哪这种方式是行不通的,这个关键字的用法是:一条查询语句在有多个索引可以检索数据时,显式指定一个索引,减少优化器选择索引的耗时。
但要注意:如果你对于你整个业务系统十分熟悉,那可以这样干。但如果不熟悉的话,还是交给优化器来自行选择,否则会适得其反!
1.3、数据库索引的本质
前面一直在聊创建、查看、删除、指定等一些索引的基本操作,但索引本质上在数据库中是什么呢?大家都知道,数据库是基于磁盘工作的,所有的数据都会放到磁盘上存储,而索引也是数据的一种,因此与表数据相同,最终创建出的索引也会在磁盘生成本地文件。
不过索引文件在磁盘中究竟以何种方式存储,这是由索引的数据结构来决定的。同时,由于索引机制最终是由存储引擎实现,因此不同存储引擎下的索引文件,其保存在本地的格式也并不相同。
在这里有一个点需要注意:建立索引的工作在表数据越少时越好,如果你想要给一张百万、千万条数据级别的表新创建一个索引,那创建的耗时也不短,这是为什么呢?
因为刚刚聊过,索引本质上和表是一样的,都是磁盘中的文件,那也就代表着创建一个索引,并不像单纯的给一张表加个约束那么简单,而是会基于原有的表数据,重新在磁盘中创建新的本地索引文件。假设表中有一千万条数据,那创建索引时,就需要将索引字段上的1000W
个值全部拷贝到本地索引文件中,同时做好排序并与表数据产生映射关系。
1.31 以下是数据库索引的一些关键方面和本质:
-
数据结构:索引本质上是一种数据结构,通常是树状结构(如B树或B+树)或哈希表。这些数据结构存储了索引列的值以及指向实际数据行的指针或引用。
-
快速查找:索引的主要目的是加速数据检索操作。通过索引,数据库管理系统可以迅速定位到包含所需数据的数据行,而无需扫描整个表。
-
提高查询性能:索引不仅加速了WHERE子句中包含索引列的条件的查询,还可以加速连接操作(如JOIN)和排序操作。
-
有序性:索引通常对索引列的值进行排序,这有助于加速范围查询和排序操作。
-
存储开销:索引需要额外的存储空间来维护索引数据结构。这意味着在选择何时创建索引时需要权衡存储成本和性能提升。
-
更新开销:插入、更新和删除操作可能会导致索引的更新,这会增加数据库维护的开销。因此,需要谨慎选择要创建索引的列。
-
数据一致性:索引需要与底层数据表一起维护,以确保索引与表的数据保持一致。
1.4、数据库索引相学习的知识点
-
索引是什么:
- 索引是数据库中的数据结构,用于提高数据检索性能。它包含一个或多个列的值,以及指向实际数据行的指针或引用。
-
索引的作用:
- 提高数据查询性能:通过快速定位和检索数据,而无需扫描整个表。
- 加速连接操作:有助于JOIN操作的效率。
- 优化排序操作:对ORDER BY子句的查询能够受益。
-
索引的类型:
- 单列索引:基于单个列的索引。
- 复合索引:基于多个列的组合索引。
- 唯一索引:确保索引列中的值唯一。
- 主键索引:用于标识表中的唯一行。
- 聚簇索引和非聚簇索引:影响数据的物理存储方式。
-
创建和管理索引:
- 创建索引可以在表创建时定义,也可以后期添加。
- 创建索引需要权衡存储开销和性能提升。
- 索引需要定期监视和维护,以确保其效率。
-
查询优化:
- 查询优化器使用索引来确定最有效的查询计划。
- 选择合适的索引可以显著提高查询性能。
-
索引的权衡:
- 索引不是没有代价的,它们占用存储空间,需要维护,可能会增加写操作的开销。
- 需要谨慎考虑哪些列需要索引,以权衡性能和开销。
-
不适合创建索引的情况:
- 当表中数据量很小或不常被查询时,创建索引可能不划算。
- 对于频繁进行大批量数据插入、更新或删除的表,过多的索引可能会导致性能问题。
-
索引的使用案例:
- WHERE子句中包含索引列的条件查询。
- 连接操作(JOIN)中的连接列。
- ORDER BY子句中的排序列。
- 唯一性约束和主键约束。
-
索引的数据结构:
- B树索引:常见于许多数据库系统中,用于维护有序数据。
- B+树索引:在许多数据库中也很常见,用于支持范围查询。
- 哈希索引:适用于等值查找,但不支持范围查询。
-
索引的维护和性能调优:
- 定期重建或重新组织索引。
- 监视查询性能并根据需要调整索引策略。
学习数据库索引是数据库管理和开发中的重要一部分,能够有效提高数据库的性能和响应时间。了解这些知识点将有助于你更好地设计和管理数据库中的索引。