攻克哈希表篇

leetcode242——有效的字母异位词

题目描述:

给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。

注意:若 s 和 t 中每个字符出现的次数都相同,则称 s 和 t 互为字母异位词。

示例 1:

输入: s = "anagram", t = "nagaram"
输出: true

示例 2:

输入: s = "rat", t = "car"
输出: false

算法思想:

计算两个字符串中所有出现字母的频率,若完全相等即为字母异位词。

算法实现:

bool isAnagram(string s, string t) { 
        //若两个字符串长度不等一定不为字母异位词
        int n = s.size(), m = t.size();
        if(n != m) return false;
        int hash[26];
        //计算字符串s的字母频率
        for(int i=0;i<n;i++) hash[s[i]-'a']++;
        //计算两个字符串的字母频率差
        for(int i=0;i<m;i++) hash[t[i]-'a']--;
        //若有字母频率差不为0,即不是字母异位词
        for(int i=0;i<26;i++){
            if(hash[i]!=0) return false;
        }
        return true;
    }

leetcode438——找到字符串中所有字母异位词

题目描述:

给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。不考虑答案输出的顺序。

异位词 指由相同字母重排列形成的字符串(包括相同的字符串)。

示例 1:

输入: s = "cbaebabacd", p = "abc"
输出: [0,6]
解释:
起始索引等于 0 的子串是 "cba", 它是 "abc" 的异位词。
起始索引等于 6 的子串是 "bac", 它是 "abc" 的异位词。

 示例 2:

输入: s = "abab", p = "ab"
输出: [0,1,2]
解释:
起始索引等于 0 的子串是 "ab", 它是 "ab" 的异位词。
起始索引等于 1 的子串是 "ba", 它是 "ab" 的异位词。
起始索引等于 2 的子串是 "ab", 它是 "ab" 的异位词。

算法思想:

若字符串s的长度小于p一定不存在。先从头开始遍历字符串s与字符串p等长的部分的字母频率,若完全相等即为一个字母异位词,然后后移一位比较下一个等长字符串与字符串的字母频率,直至比较到s的末尾等长字符串。

算法实现:

vector<int> findAnagrams(string s, string p) {
        int slen = s.size(), plen = p.size();
        if(slen<plen) return vector<int>();
        vector<int> nums;
        vector<int> sfreq(26,0);
        vector<int> pfreq(26,0);
        //记录下s从头开始的与p等长的字符串的字母频率与p的字母频率
        for(int i=0;i<plen;i++){
            sfreq[s[i]-'a']++;
            pfreq[p[i]-'a']++;
        }
        //从开头第一个等长字符串比较到末尾的等长字符串
        for (int i = 0; i <= slen - plen; i++) {
            if (sfreq == pfreq) nums.emplace_back(i);
            if(i<slen-plen){
                /*下一个等长字符串为去头字母加尾字母,频率数组只需头字母的频率-1,
                加入新的尾字母频率+1*/
                sfreq[s[i]-'a']--;
                sfreq[s[i+plen]-'a']++;
            }
        }
        return nums;
    }

leetcode454——四数相加

题目描述:

给你四个整数数组 nums1nums2nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足:

  • 0 <= i, j, k, l < n
  • nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0

示例 1:

输入:nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]
输出:2
解释:
两个元组如下:
1. (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 0
2. (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0

示例 2:

输入:nums1 = [0], nums2 = [0], nums3 = [0], nums4 = [0]
输出:1

算法思想:

将四个数组进行分组,2个一组,分别将每组的和与凑成该和有几种搭配存放在map的key与value中。最后检查和为0的个数。

算法实现:

int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
        //分别存放每组的和
        unordered_map<int,int> map1,map2;
        int count=0;
        for(int num1:nums1){
            for(int num2:nums2){
                map1[num1+num2]++;
            }
        }
        for(int num3:nums3){
            for(int num4:nums4){
                map2[num3+num4]++;
            }
        }
        int target;
        for(auto &it:map1){
            //在第二组找与第一组和为0的组合(first存放和,second存放构成这种和有多少种搭配)
            target=0-it.first;
            if(map2.find(target)!=map2.end()) count=count+it.second*map2[target];
        }
        return count;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值