cogs 729. [网络流24题] 圆桌聚餐

  1. [网络流24题] 圆桌聚餐
    ★★ 输入文件:roundtable.in 输出文件:roundtable.out 评测插件
    时间限制:1 s 内存限制:128 MB «问题描述:
    假设有来自m 个不同单位的代表参加一次国际会议。每个单位的代表数分别为
    ri(i=1,2,3…m), 。会议餐厅共有n张餐桌,每张餐桌可容纳c i(i=1,2…n) 个代表就餐。
    为了使代表们充分交流,希望从同一个单位来的代表不在同一个餐桌就餐。试设计一个算法,
    给出满足要求的代表就餐方案。
    «编程任务:
    对于给定的代表数和餐桌数以及餐桌容量,编程计算满足要求的代表就餐方案。
    «数据输入:
    由文件roundtable.in提供输入数据。文件第1行有2 个正整数m和n,m表示单位数,n表
    示餐桌数,1<=m<=150, 1<=n<=270。文件第2 行有m个正整数,分别表示每个单位的代表
    数。文件第3 行有n个正整数,分别表示每个餐桌的容量。
    «结果输出:
    程序运行结束时,将代表就餐方案输出到文件roundtable.out中。如果问题有解,在文件第
    1 行输出1,否则输出0。接下来的m行给出每个单位代表的就餐桌号。如果有多个满足要
    求的方案,只要输出1 个方案。
    输入文件示例 输出文件示例
    roundtable.in

4 5
4 5 3 5
3 5 2 6 4
roundtable.out

1
1 2 4 5
1 2 3 4 5
2 4 5
1 2 3 4 5


【分析】
接受了一节课的网络流建图点拨后感觉自己稍微会一点了…
这个题也是典型的网络流建模题。

  1. 由于每个桌子有容量,那么我们在每个桌子i和源点之间都连一条容量为c[i]的边
  2. 在每个桌子和每个代表团之间连一条边,共m*n条边,容量均为1,这步是为了限制每个代表团仅有一个代表坐一个桌子
  3. 在每个代表团和汇点之间连一条容量为r[i]的边。
  4. 跑一遍最大流
  5. 判断每个代表与汇点之间的容量是否全被用光,如果还有剩余的容量,就代表该代表团中有代表没有被安排桌子,此时输出0,结束程序。
  6. 枚举代表团i,再枚举每个桌子j,如果i和j之间的容量被用掉,那么表示桌子j被i代表团的一人所占用,输出桌子j的编号。
    (完结撒花)

【代码】

//729. [网络流24题] 圆桌聚餐
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define inf 1e9+7
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
queue <int> q;
const int mxn=100005;
int n,m,cnt,ans,t=10000;
int c[105][1005];
int head[mxn],dis[mxn];
struct node {int to,next,flow;} f[mxn<<2]; 
inline void add(int u,int v,int flow)
{
    f[++cnt].to=v,f[cnt].next=head[u],f[cnt].flow=flow,head[u]=cnt;
    f[++cnt].to=u,f[cnt].next=head[v],f[cnt].flow=0,head[v]=cnt;
}
inline bool bfs()
{
    int i,j,u,v,flow;
    memset(dis,-1,sizeof dis);
    q.push(0);
    dis[0]=0;
    while(!q.empty())
    {
        u=q.front();
        q.pop();
        for(i=head[u];i;i=f[i].next)
        {
            v=f[i].to,flow=f[i].flow;
            if(dis[v]==-1 && flow>0)
              dis[v]=dis[u]+1,q.push(v);
        }
    }
    if(dis[t]>0) return 1;
    return 0;
}
inline int find(int u,int low)
{
    int v,i,j,a=0,sum=0,flow;
    if(u==t) return low;
    for(i=head[u];i;i=f[i].next)
    {
        v=f[i].to,flow=f[i].flow;
        if(flow>0&& dis[v]==dis[u]+1 && (a=find(v,min(low-sum,flow))))
        {
            f[i].flow-=a;
            if(i&1) f[i+1].flow+=a;
            else f[i-1].flow+=a;
            sum+=a;
        }
    }
    if(!sum) dis[u]=-1;
    return sum;
}
int main()
{
    freopen("roundtable.in","r",stdin);
    freopen("roundtable.out","w",stdout);
    bool flag=0;
    int i,j,k,u,v,tans,flow;
    scanf("%d%d",&m,&n);
    fo(i,1,m)  //每个代表团人数 
    {
        scanf("%d",&k);
        add(i+300,t,k);
    }
    fo(i,1,n)  //桌子容量 
    {
        scanf("%d",&k);
        add(0,i,k);
    }
    fo(i,1,n) fo(j,1,m) add(i,j+300,1);
    while(bfs())
      while(tans=find(0,0x7f7f))
        ans+=tans;
    fo(u,301,300+m) 
      for(i=head[u];i;i=f[i].next)
      {
          v=f[i].to,flow=f[i].flow;
          if(v==t && flow) {flag=1;break;} 
      }
    if(flag) {printf("0\n");return 0;} 
    printf("1\n");
    fo(u,301,300+m)   //在残量网络中寻找已被走过的边,枚举代表团 
    {
        for(i=head[u];i;i=f[i].next)
        {
            v=f[i].to,flow=f[i].flow;
            if(v!=t && flow)  //不能是源点,已被流过
              printf("%d ",v); 
        }
        printf("\n");
    } 
    return 0;
}
//4 5
//4 5 3 5
//3 5 2 6 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值