- [网络流24题] 最小路径覆盖问题
★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件
时间限制:1 s 内存限制:128 MB
算法实现题8-3 最小路径覆盖问题(习题8-13)
´问题描述:
给定有向图G=(V,E)。设P是G的一个简单路(顶点不相交)的集合。如果V中每个
顶点恰好在P的一条路上,则称P是G的一个路径覆盖。P中路径可以从V的任何一个顶
点开始,长度也是任意的,特别地,可以为0。G的最小路径覆盖是G的所含路径条数最少
的路径覆盖。
设计一个有效算法求一个有向无环图G的最小路径覆盖。
提示:
设V={1,2,… ,n},构造网络G1=(V1,E1)如下:
每条边的容量均为1。求网络G1的(x0,y0)最大流。
´编程任务:
对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。
´数据输入:
由文件input.txt提供输入数据。文件第1行有2个正整数n和m。n是给定有向无环图
G的顶点数,m是G的边数。接下来的m行,每行有2个正整数i 和j,表示一条有向边(i,j)。
´结果输出:
程序运行结束时,将最小路径覆盖输出到文件output.txt中。从第1行开始,每行输出
一条路径。文件的最后一行是最少路径数。
输入文件示例
input.txt
11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11
输出文件示例
output.txt
1 4 7 10 11
2 5 8
3 6 9
3
数据范围:
1<=n<=150,1<=m<=6000
【分析】
题里说了做法…路径覆盖转为二分图最大匹配问题
加边操作竟然写错了…也是没谁了
【代码】
//cogs 728. [网络流24题] 最小路径覆盖问题
#include<iostream>
#include<climits>
#include<cstdio>
#include<queue>
#include<cstring>
#define inf 1e9+7
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=10005;
queue <int> q;
int n,m,s,t,ans,cnt;
int head[mxn],dis[mxn],pre[mxn],next[mxn];
struct node {int to,num,next,flow;} f[mxn<<2];
inline void add(int u,int v,int flow,int num) //num:边的编号
{
f[++cnt].to=v,f[cnt].next=head[u],f[cnt].flow=flow,f[cnt].num=num,head[u]=cnt;
f[++cnt].to=u,f[cnt].next=head[v],f[cnt].flow=0,f[cnt].num=num,head[v]=cnt;
}
inline bool bfs()
{
int i,j,u,v,flow;
q.push(s);
memset(dis,-1,sizeof dis);
dis[s]=0;
while(!q.empty())
{
u=q.front();
q.pop();
for(i=head[u];i;i=f[i].next)
{
v=f[i].to,flow=f[i].flow;
if(dis[v]==-1 && flow>0)
dis[v]=dis[u]+1,q.push(v);
}
}
if(dis[t]>0) return 1;
return 0;
}
inline int find(int u,int low)
{
int i,j,v,a,flow,sum=0;
if(u==t) return low;
for(i=head[u];i;i=f[i].next)
{
v=f[i].to,flow=f[i].flow;
if(dis[v]==dis[u]+1 && flow>0 && (a=find(v,min(low-sum,flow))))
{
sum+=a;
f[i].flow-=a;
if(i&1) f[i+1].flow+=a;
else f[i-1].flow+=a;
}
}
if(!sum) dis[u]=-1;
return sum;
}
int main()
{
// freopen("path3.in","r",stdin);
// freopen("path3.out","w",stdout);
int i,j,u,v,x,y,flow;
scanf("%d%d",&n,&m);
s=0,t=n+n+1;
fo(i,1,m)
{
scanf("%d%d",&u,&v);
add(u,v+n,1,i);
}
fo(u,1,n) add(s,u,1,0),add(u+n,t,1,0);
while(bfs()) ans+=find(s,INT_MAX);
fo(u,1,n)
{
for(i=head[u];i;i=f[i].next)
{
v=f[i].to,flow=f[i].flow;
if(v!=s && !flow) pre[v]=u,next[u]=v;
}
}
fo(x,1,n) if(!pre[x+n]) //如果没有入边
{
u=x;
while(next[u])
{
printf("%d ",u);
v=next[u];
u=v-n;
}
printf("%d\n",u);
}
printf("%d\n",n-ans);
return 0;
}
//11 12
//1 2
//1 3
//1 4
//2 5
//3 6
//4 7
//5 8
//6 9
//7 10
//8 11
//9 11
//10 11