题目描述
给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。
输入输出格式
输入格式:
输入文件中仅包含一行两个整数a、b,含义如上所述。
输出格式:
输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。
输入输出样例
输入样例#1:
1 99
输出样例#1:
9 20 20 20 20 20 20 20 20 20
说明
30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。
【分析】
马丹预处理处理错了结果查了半天卡位…诶哟我真想rigel
dp[i][j][k]表示i位数字,开头为j,数字k出现的次数,然后就可以乱搞了
【代码】
//zjoi count
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
ll a,b;
ll dp[15][10][10],digit[15],ans[2][10],pw[15]; //i位数,首位为j,数字k出现的次数
void work(ll n,int c)
{
ll i,j,k,x,y,len=0;
memset(digit,0,sizeof digit);
ll tmp=n;
while(n)
digit[++len]=n%10,n/=10;
int h=len-1;
while(h>=0)
{
tmp%=pw[h];
ans[c][digit[h+1]]+=tmp+1;
h--;
}
for(i=len-1;i>=1;i--)
fo(j,1,9) fo(k,0,9) ans[c][k]+=dp[i][j][k];
fo(j,1,digit[len]-1)
fo(k,0,9)
ans[c][k]+=dp[len][j][k];
for(i=len-1;i>=1;i--)
fo(j,0,digit[i]-1)
fo(k,0,9)
ans[c][k]+=dp[i][j][k];
}
int main()
{
// freopen("countzj.in","r",stdin);
// freopen("countzj.out","w",stdout);
int i,j,k,x,y;
scanf("%lld%lld",&a,&b);pw[0]=1;
fo(i,1,12) pw[i]=pw[i-1]*10;
fo(i,0,9) dp[1][i][i]=1;
fo(i,2,12)
fo(j,0,9)
fo(k,0,9)
{
if(j==k) dp[i][j][k]+=pw[i-1];
fo(x,0,9)
dp[i][j][k]+=dp[i-1][x][k];
}
work(b,0);
work(a-1,1);
fo(i,0,9) printf("%lld ",ans[0][i]-ans[1][i]);
printf("\n");
return 0;
}
/*
100000 100001
*/