洛谷 P2602 [ZJOI2010]数字计数

题目描述

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

输入输出格式
输入格式:

输入文件中仅包含一行两个整数a、b,含义如上所述。

输出格式:

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

输入输出样例

输入样例#1:
1 99

输出样例#1:
9 20 20 20 20 20 20 20 20 20

说明

30%的数据中,a<=b<=10^6;

100%的数据中,a<=b<=10^12。


【分析】
马丹预处理处理错了结果查了半天卡位…诶哟我真想rigel
dp[i][j][k]表示i位数字,开头为j,数字k出现的次数,然后就可以乱搞了


【代码】

//zjoi count
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
ll a,b;
ll dp[15][10][10],digit[15],ans[2][10],pw[15];   //i位数,首位为j,数字k出现的次数 
void work(ll n,int c)
{
    ll i,j,k,x,y,len=0;
    memset(digit,0,sizeof digit);
    ll tmp=n;
    while(n)
      digit[++len]=n%10,n/=10;
    int h=len-1;
    while(h>=0)
    {
        tmp%=pw[h];
        ans[c][digit[h+1]]+=tmp+1;
        h--;
    }
    for(i=len-1;i>=1;i--)
      fo(j,1,9) fo(k,0,9) ans[c][k]+=dp[i][j][k];
    fo(j,1,digit[len]-1)
      fo(k,0,9)
        ans[c][k]+=dp[len][j][k];
    for(i=len-1;i>=1;i--)
      fo(j,0,digit[i]-1)
        fo(k,0,9)
          ans[c][k]+=dp[i][j][k];
}
int main()
{
//  freopen("countzj.in","r",stdin);
//  freopen("countzj.out","w",stdout);
    int i,j,k,x,y;
    scanf("%lld%lld",&a,&b);pw[0]=1;
    fo(i,1,12) pw[i]=pw[i-1]*10;
    fo(i,0,9) dp[1][i][i]=1;
    fo(i,2,12)
      fo(j,0,9)
        fo(k,0,9)
        {
            if(j==k) dp[i][j][k]+=pw[i-1];
            fo(x,0,9)
              dp[i][j][k]+=dp[i-1][x][k];
        }
    work(b,0);
    work(a-1,1);
    fo(i,0,9) printf("%lld ",ans[0][i]-ans[1][i]);
    printf("\n");
    return 0;
}
/* 
100000 100001
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值