4653: [Noi2016]区间
Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 714 Solved: 388
[ Submit][ Status][ Discuss]
Description
在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn]。现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区间 [li,ri],都有 li≤x≤ri。
对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri−li,即等于它的右端点的值减去左端点的值。
求所有合法方案中最小的花费。如果不存在合法的方案,输出 −1。
Input
第一行包含两个正整数 n,m用空格隔开,意义如上文所述。保证 1≤m≤n
接下来 n行,每行表示一个区间,包含用空格隔开的两个整数 li 和 ri 为该区间的左右端点。
N<=500000,M<=200000,0≤li≤ri≤10^9
Output
只有一行,包含一个正整数,即最小花费。
Sample Input
6 3
3 5
1 2
3 4
2 2
1 5
1 4
3 5
1 2
3 4
2 2
1 5
1 4
Sample Output
2
HINT
Source
【分析】
听他们说这题是国赛里最简单的...
然后我看了一眼发现不会,想到了排序但是不知道怎么判m。
瞄了一眼题解...发现自己就是个煞笔
区间离散化按长度排序之后逐一插入线段树中,维护左右两个指针,滑稽滑稽扫一遍就完了...
唉这么菜怎么考国赛。
虽然是个邀请赛选手吧。
【代码】
//NOI 2016 区间
#include<bits/stdc++.h>
#define ll long long
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=500005;
const int N=4000005;
int n,m,T,cnt,size;
int ans=1e9+7;
int p[mxn<<1];
struct line {int l,r,len;} a[mxn];
struct seg {int l,r,mx,mark;} t[N];
inline bool comp(line u,line v)
{
return u.len<v.len;
}
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
inline void build(int num,int l,int r)
{
t[num].l=l,t[num].r=r;
if(l==r) return;
int mid=l+r>>1;
build(num<<1,l,mid);
build(num<<1|1,mid+1,r);
}
inline void pushdown(int num)
{
if(t[num].mark)
{
t[num<<1].mx+=t[num].mark;
t[num<<1|1].mx+=t[num].mark;
t[num<<1].mark+=t[num].mark;
t[num<<1|1].mark+=t[num].mark;
t[num].mark=0;
}
}
inline void add(int num,int L,int R,int c)
{
if(L<=t[num].l && t[num].r<=R)
{
t[num].mx+=c;
t[num].mark+=c;
return;
}
pushdown(num);
if(L<=t[num<<1].r) add(num<<1,L,R,c);
if(R>=t[num<<1|1].l) add(num<<1|1,L,R,c);
t[num].mx=max(t[num<<1].mx,t[num<<1|1].mx);
}
int main()
{
int i,j;
n=read(),m=read();
fo(i,1,n)
{
a[i].l=read(),a[i].r=read();
a[i].len=a[i].r-a[i].l+1;
p[++cnt]=a[i].l,p[++cnt]=a[i].r;
}
sort(p+1,p+cnt+1);
cnt=unique(p+1,p+cnt+1)-p-1;
fo(i,1,n)
{
a[i].l=lower_bound(p+1,p+cnt+1,a[i].l)-p;
a[i].r=lower_bound(p+1,p+cnt+1,a[i].r)-p;
size=max(size,max(a[i].l,a[i].r));
}
sort(a+1,a+n+1,comp);
build(1,1,size);
for(int L=1,R=0;L<=n;add(1,a[L].l,a[L].r,-1),L++)
{
while(R<n && t[1].mx<m)
R++,add(1,a[R].l,a[R].r,1);
if(R==n && t[1].mx<m) break;
ans=min(ans,a[R].len-a[L].len);
}
printf("%d\n",ans<=1000000000?ans:-1);
return 0;
}