先决条件
运行环境:linux 或者 macOS
python3.6+
pytorch1.3+
cuda 9.2+
gcc 5+
MMCV
安装环境
安装conda
conda官网 https://docs.conda.io/en/latest/miniconda.html 根据自身系统下载响应版本。使用wget下载,如:
wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
完成后给予执行权限:
chmod +x Miniconda3-latest-Linux-x86_64.sh
然后直接运行:
安装open-mmlab虚拟环境
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
安装PyTorch 和 torchvision
conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
安装 mmcv-full
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
安装MMdetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"
LabelImg标注软件
安装labelImg标准软件
pip install PyQt5==5.13
pip install labelImg
使用labelImg 对素材进行标准
运行labelImg 软件.如下图:
选择标准文件保存格式为“PascalVoc”:
点击“打开文件按钮”,并选择素材文件夹
点击左中位置”创建区块”按钮对图片进行标注:
Ctrl+S 快速保存标注
直接点击“save”按钮即可。
标注文件如下图所示
标注信息包括了图片宽高,标注名称(close)以及标注区域的左上、右下坐标等。
使用voc2coco.py 把标注转换为coco格式
python voc2coco.py xml_dir json_file
voc2coco.py下载地址:https://github.com/Tony607/voc2coco
修改训练配置文件
mmdetection提供了4种基本组件类型在config/_base_下,dataset, model, schedule, default_runtime.许多方法可以使用其中的一种轻松构建,例如 Faster R-CNN、Mask R-CNN、Cascade R-CNN、RPN、SSD。由组件组成的配置_base_称为原始配置。以Faster R-CNN为例,将以上几个部分组成一个配置文件如:
model = dict(
type='FasterRCNN',
pretrained='torchvision://resnet101',
b