MMdetection对象检测模型使用说明

先决条件

运行环境:linux 或者 macOS

python3.6+

pytorch1.3+

cuda 9.2+

gcc 5+

MMCV

安装环境

安装conda

conda官网 https://docs.conda.io/en/latest/miniconda.html 根据自身系统下载响应版本。使用wget下载,如:

wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh

完成后给予执行权限:

chmod +x Miniconda3-latest-Linux-x86_64.sh

然后直接运行:

安装open-mmlab虚拟环境

conda create -n open-mmlab python=3.7 -y

conda activate open-mmlab

安装PyTorch 和 torchvision

conda install pytorch cudatoolkit=10.1 torchvision -c pytorch

安装 mmcv-full

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

安装MMdetection

git clone https://github.com/open-mmlab/mmdetection.git

cd mmdetection

pip install -r requirements/build.txt

pip install -v -e .  # or "python setup.py develop"

LabelImg标注软件

安装labelImg标准软件

pip install PyQt5==5.13

pip install labelImg

使用labelImg 对素材进行标准

运行labelImg 软件.如下图:

选择标准文件保存格式为“PascalVoc”:

点击“打开文件按钮”,并选择素材文件夹

点击左中位置”创建区块”按钮对图片进行标注:

Ctrl+S 快速保存标注

直接点击“save”按钮即可。

标注文件如下图所示

标注信息包括了图片宽高,标注名称(close)以及标注区域的左上、右下坐标等。

使用voc2coco.py 把标注转换为coco格式

python voc2coco.py xml_dir json_file

voc2coco.py下载地址:https://github.com/Tony607/voc2coco

修改训练配置文件

mmdetection提供了4种基本组件类型在config/_base_下,dataset, model, schedule, default_runtime.许多方法可以使用其中的一种轻松构建,例如 Faster R-CNN、Mask R-CNN、Cascade R-CNN、RPN、SSD。由组件组成的配置_base_称为原始配置。以Faster R-CNN为例,将以上几个部分组成一个配置文件如:

model = dict(
    type='FasterRCNN',
    pretrained='torchvision://resnet101',
    b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值