结构体内存对齐规则(如何计算结构体大小)

本文详细解析了结构体内存对齐的规则及其原因,并通过两个案例进行了具体说明。介绍了如何计算结构体的大小,解释了内存对齐背后的性能考量及平台移植性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设我们要计算下面这个结构体的大小,你或许觉得大小难道不是 1+4+1=6 吗,实际上结构体对象的计算方式并不是直接计算的,需要遵循结构体内存对齐规则,至于为什么要这样做?原因放到最后再说。

struct Data
{
 char c1;
 int i;
 char c2;
};

结构体内存对齐规则有四点,前三点是常规结构体的计算方式,最后一点是结构体内部嵌套了一个结构体才会用上。下面就通过两个案例来了解结构体内存对齐规则。


目录

一、案例一:简单结构体大小计算

1、第一个成员放置

2、第二个成员放置

3、第三个成员放置

4、代码验证

二、案例二:复杂结构体计算(嵌套结构体)

1、第一个成员放置

2、第二个成员放置

3、第三个成员放置

4、代码验证

三、为什么存在内存对齐?

1、性能原因

2、平台移植性

四、使用内存对齐时,如何节省空间


一、案例一:简单结构体大小计算

1、第一个成员放置

案例一就是计算最开始抛出的结构体大小。结构体内存对齐规则:第一点,第一个成员要放在与结构体起始位置偏移量为0的位置。

即确定结构体的第一个成员的位置。我们从起始位置开始放,偏移量为0,也就是说,结构体的第一个成员就放在第 0 个位置。

2、第二个成员放置

 结构体内存对齐规则:第二点,结构体成员从第二个成员开始,要放在偏移量为对齐数的整数倍处。

其中,对齐数 = 编译器默认对齐数和变量自身大小的较小值。默认对齐数是由编译器决定的

                — VS 编译器:默认对齐数为8,对齐数 = min{8,变量自身大小}

                — Linux:无默认对齐数,对齐数 = 变量自身大小

假设我们现在使用的是VS的编译器,结构体第二个成员是 int 类型,自身大小为 4,所以对齐数 = min{4,8} = 4。那么偏移量就是4的整数倍,我们先看第 4 个位置有没有被占据,没有被占据,那就从第 4 个位置开始放。

3、第三个成员放置

第三个结构体成员的放置方式和第二个成员一样,第三个结构体成员为 char 类型,自身大小为1,对齐数 = min{1,8} = 1,此时偏移量应该为1的倍数,8 是 1的倍数,所以此时 c2 应该放在第 8 个位置上。

还没有结束,接下来就要用到结构体内存对齐原则的第三点了,结构体内存对齐规则:第三点,结构体的最终大小必须是 所有成员的对齐数中最大值  的整数倍。

struct Data
{       
 char c1;      //1 8 -> 1 (自身大小  默认对齐数  ->  对齐数)
 int i;        //4 8 -> 4
 char c2;      //1 8 -> 1
//char c3[5]   //对齐数是 1。其实就是依次放5个char类型的数据,因此放的时候,每次只关注一个,对齐数就是1
};

三个结构体成员的对齐数依次是1、4 、1,三个对齐数里的最大值为 4,即结构体的最终大小必须是 4 的整数倍,从上面排布的结果来看,当前的字节数为 9 ,因此,需要补全为12 个字节,其实就相当于浪费了3个字节。下面这个才是一个结构体的最终大小。        

4、代码验证

至于这个结构体的大小到底是不是 12,我们可以通过代码验证一下。

二、案例二:复杂结构体计算(嵌套结构体)

一个结构体中是可以嵌套其他结构体的,现在我们要计算结构体Combine的大小,又该如何计算呢??这里就需要用到结构体内存对齐规则的第四点了。

struct Data
{
	char c1;      //1 8 -> 1 (自身大小  默认对齐数  ->  对齐数)
	int i;        //4 8 -> 4
	char c2;      //1 8 -> 1
};

struct Combine
{
	char c3;          //1 8 -> 1 (自身大小  默认对齐数  ->  对齐数)
	struct Data d1;   //       4
	double d2;        //8 8 -> 8
};

结构体内存对齐规则:第四点,如果嵌套了结构体的情况,嵌套的结构体的偏移量是自己成员最大对齐数的整数倍,构体的整体大小就是最大对齐数(含嵌套结构体的对齐数)的整数倍。

1、第一个成员放置

我们先看Combine的第一个成员c3,根据结构体对齐规则的第一点,直接放到偏移量为0的位置。

2、第二个成员放置

第二个成员是嵌套的结构体Data,此时它的对齐数是自己成员对齐数的最大值,即对齐数 = 4,因此,偏移量为 4 的整数倍。上面已经计算过了该结构体的大小为 12。

3、第三个成员放置

第三个成员的对齐数 = min{8,8} = 8,即偏移量为 8 的整数倍。第8个位置已经被占据了,所以我们放到第 16 个位置。

此时结构体的大小为17 个字节,结构体的最终大小是 最大对齐数的整数倍,即8 的整数倍,所以结构体的最终大小为 24。

4、代码验证

三、为什么存在内存对齐?

从上面画的图来看,在放置结构体成员的位置时,存在很多空间被浪费的情况。结构体内存对齐的做法其实是一种用空间换取时间的做法。那为什么要使用内存对齐呢?主要原因如下:

1、性能原因

一方面是为了使CPU能够对变量进行快速的访问。假设我们要访问 结构体Data的成员 i,i是int类型,每次读取4个字节,内存不对齐的情况下,编译器不知道 i 从哪个位置开始,只能从头开始访问,直到把 i 读取完。

内存对齐的情况下,编译器知道内存对齐规则,i 一定 是在偏移量为 对齐数的整数倍处,所以可以直接开始访问,只需要一次就能读取完。

2、平台移植性

并不是所有的硬件平台都能访问内存上的任意位置的,比如有的平台只能访问到内存上4的整数倍的位置,此时如果我们把数据放在第 13 个位置,平台很有可能就无法访问到这个数据。

但是使用了内存对齐规则以后,我们会发现,几乎每个结构体成员的开始位置,都是 4 的整数倍,这样的话,移植到其他平台的时候,其他平台能够顺利访问到对应的数据。

四、使用内存对齐时,如何节省空间

内存对齐的方式其实是一种空间换时间的做法,存在浪费空间的情况,那么要如何减少空间的浪费呢?尽量让占用空间小的成员放在一起。下面我们调换一下结构体的成员顺序来比对一下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值