LintCode -- unique-paths(不同的路径)
原题链接:http://www.lintcode.com/zh-cn/problem/unique-paths/
有一个机器人的位于一个M×N个网格左上角(下图中标记为'Start')。
机器人
每一时刻
只能向下或者向右移动一步。机器人试图达到网格的右下角(下图中标记为
'Finish'
)。
问有多少条不同的路径?
您在真实的面试中是否遇到过这个题?
Yes
样例
1,1 | 1,2 | 1,3 | 1,4 | 1,5 | 1,6 | 1,7 |
2,1 | | | | | | |
3,1 | | | | | | 3,7 |
以上3 x 7的网格中,有多少条不同的路径?
注意
n和m均不超过100
分析:
dp[ n ][ m ] = dp[ n-1 ][ m ] + dp[ n ][ m-1 ]
时间复杂度 O(mn) 空间复杂度 O(m)
代码(C++、Python、Java):
class Solution {
public:
/**
* @param n, m: positive integer (1 <= n ,m <= 100)
* @return an integer
*/
int uniquePaths(int m, int n) {
// wirte your code here
if (n == 1 || m == 1) return 1;
if (n == 2) return m;
if (m == 2) return n;
int dp[2][m];
for (int i = 0; i < m; i++){
dp[0][i] = i + 1;
dp[1][i] = i + 1;
}
for (int i = 3; i <= n; i++)
for (int j = 1; j < m; j++)
dp[i%2][j] = dp[(i-1)%2][j] + dp[i%2][j-1];
return dp[n%2][m-1];
}
};
public class Solution {
/**
* @param n, m: positive integer (1 <= n ,m <= 100)
* @return an integer
*/
public int uniquePaths(int m, int n) {
// write your code here
if (n == 1 || m == 1) return 1;
if (n == 2) return m;
if (m == 2) return n;
int [][] dp = new int [2][m];
for (int i = 0; i < m; i++){
dp[0][i] = i + 1;
dp[1][i] = i + 1;
}
for (int i = 3; i <= n; i++)
for (int j = 1; j < m; j++)
dp[i%2][j] = dp[(i-1)%2][j] + dp[i%2][j-1];
return dp[n%2][m-1];
}
}
class Solution:
"""
@param n and m: positive integer(1 <= n , m <= 100)
@return an integer
"""
def uniquePaths(self, m, n):
# write your code here
if n == 1 or m == 1:
return 1
if n == 2:
return m
if m == 2:
return n
dp = [[i for i in range(1, m+1)] for j in range(2)]
for i in range(3, n+1):
for j in range(1, m):
dp[i%2][j] = dp[(i-1)%2][j] + dp[i%2][j-1]
return dp[n%2][m-1]