解法都在代码里,不懂就留言或者私信
class Solution {
/**本题的解题思路是双指针:一个从头开始一个从尾巴开始,两头的肯定是没有办法接住雨水的,你可以认为0位置左边是0的柱子
所以理论上我们是从1遍历到n-2,但是你也可以遍历0到N-1,两种方式的不用我们设置的变量值也不同
以我从1~n-2遍历来说,我先把lMax设置为heigh[0], rMax设置为height[height.lenght - 1]
如果以0~N-1遍历来说,两个变量都设置为0
遍历的过程中比较lMax和rMax的大小,lMax小结算左边,rMax小的话结算右边
如果lMax和rMax相同则两个都结算,所以遍历过程中很可能出现每次计算两个的情况,比如[5,1,1,2,3,4,5]
左边结算时用Math.max(0, lMax-height[left]),右边使用Math.max(0, rMax-height[right])
这样结算的原理是就算只有两根柱子,我们要结算的柱子加上水也至少可以到达短的那个柱子的高度
但是就算中间有更高的柱子,根据木桶原理,也确实只能放这么多
*/
public int trap(int[] height) {
/**空的或者只有两个及以下的柱子是放不了水的,因为我们认为边缘的柱子高度都是0 */
if(height == null || height.length <= 2){
return 0;
}
/**左边从1开始,右边从height.length-2开始 */
int left = 1;
int right = height.length - 2;
/**lMax, rMax代表目前为止左右柱子的最大高度 */
int lMax = height[0];
int rMax = height[height.length - 1];
int ans = 0;
while(left < right) {
/**lMax小计算左边,rMax大更新右边,中间记得尝试更细lMax和rMax*/
if(lMax < rMax) {
ans += Math.max(0, lMax - height[left]);
lMax = Math.max(lMax, height[left ++]);
} else if(rMax < lMax) {
ans += Math.max(0,rMax - height[right]);
rMax = Math.max(rMax, height[right --]);
} else {
ans += Math.max(0,lMax - height[left]);
ans += Math.max(0,rMax - height[right]);
lMax = Math.max(lMax, height[left ++]);
rMax = Math.max(rMax, height[right--]);
}
}
/**如果最后是因为left=right退出的,需要单独结算一下这个位置 */
if(left == right) {
ans += Math.max(0, Math.min(lMax, rMax) - height[left]);
}
return ans;
}
}
运行结果