《编程之美》中黑球,白球各100,问最后剩下一个是黑球的概率

本文探讨了一个涉及概率论与逻辑思维的问题:在一个包含等量白球与黑球的桶中,遵循特定规则取球并放入新球,最终桶内仅剩一个黑球的概率。文章首先通过寻找规律,发现每次操作后球的数量只会减少,从而排除剩余白球的可能性,最终得出结论。随后,运用数学方法,特别是异或运算,进一步验证这一结论的有效性。
摘要由CSDN通过智能技术生成

转载自:http://blog.csdn.net/hardbrave/article/details/7005652

题目:有一个桶,里面有白球、黑球各100个,人们必须按照以下的规则把球取出来:

1、每次从桶里面拿出来两个球;

2、如果是两个同色的球,就再放入一个黑球;

3、如果是两个异色的球,就再放入一个白球;

问:最后桶里面只剩下一个黑球的概率是多少?

思路1:找规律

    使用(黑球个数, 白球个数)来表示桶中黑球和白球的个数变动,正数表示增加,负数表示减少,根据规则找规律:

1、如果每次从桶里面拿出两个白球,则应放入一个黑球:(0, -2) + (1, 0) = (1, -2);

2、如果每次从桶里面拿出两个黑球,则应放入一个黑球:(-2, 0) + (1, 0) = (-1, 0);

3、如果每次从桶里面拿出一个白球和一个黑球,则应放入一个白球:(-1, -1) + (0, 1) = (-1, 0);

    从以上各种情况可以看出以下规律:

1)每次都会减少一个球,那么最后的结果肯定是桶内只剩一个球,要么是白球,要么是黑球;

2)每次拿球后,白球的数目要么不变,要么两个两个地减少;

    所以,从上面的分析可以得知,最后不可能只剩下一个白球,那么必然就只能是黑球了。

思路2:使用数学方法

    根据取球规则联想到数学中异或(XOR):

1、两个相同的数,异或等于0;

2、两个不同的数,异或等于1;

    将黑球看作0,白球看作1,那么对于每次的操作可以做这样的想象:每次捞起两个数字做一次异或操作,并将所得的结果再次丢回桶中,因此最后的结果实际上相当于把所有的球都进行一次异或运算,最后所得的结果即为最后剩余的球。

    异或运算规律:

1)偶数个1异或,结果为0;

2)偶数个0异或,结果为0;

3)奇数个1异或,结果为1;

4)奇数个0异或,结果为0:

    对于复杂问题的分析,最有效的方法就是通过简单的例子进行归纳,然后根据实际归纳出的结论进行结果分析,而适当的数学抽象在解决问题的过程中往往有画龙点睛的作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值