An All-in-One Network for Dehazing and Beyond(图像去雾2017)

本文介绍了一种使用卷积神经网络(CNN)构建的一体化去雾网络(AOD网),该网络基于大气散射模型并直接从模糊图像生成清晰图像。AOD网避免了传输矩阵和大气光的单独估计,通过轻量级CNN进行端到端训练。研究了去雾质量对后续高级视觉任务的影响,并且可以与其他深度模型结合,以提高模糊图像处理的性能。网络设计包括K-估计模块和清晰图像生成模块,实现了高效和准确的去雾效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

本文提出了一种用卷积神经网络(CNN)构建的图像去雾模型,称为一体化去雾网络(AOD网)。它是基于一个重构的大气散射模型设计的。AOD网络没有像大多数以前的模型那样分别估计传输矩阵和大气光,而是通过一个轻量级的CNN直接生成清晰的图像。这种新颖的端到端设计使得很容易将AOD网络嵌入到其他深度模型中,例如,更快的R-CNN,以提高模糊图像的高级任务性能。

本文贡献

(1)我们首先提出了一个端到端的可训练去雾模型,该模型直接从模糊图像产生干净的图像,而不依赖于任何单独的和中间的参数估计步骤1。.AOD网络是基于重新制定的大气散射模型设计的,物理模型可以用一种“更加端到端”的方式来表述,所有的参数都在一个统一的模型中进行估计。

(2)我们首次定量研究去雾质量如何影响后续的高级视觉任务,这为比较去雾结果提供了一个新的客观标准。此外,AOD网络可以与其他深度模型无缝嵌入,以构成一个管道,通过隐式去雾过程对模糊图像执行高级任务。由于我们独特的一体化设计,这种管道可以端到端地联合调整,以进一步提高性能。

AOD网:一体化去雾模式

物理模型和转换公式

大气散射模型

I(x)= J(x)t(x)+A(1-t(x))   (1)

I(x)是有雾图像,J(x)是待恢复无雾图像 A是全球大气光,t(x)是传输矩阵

t(x)=e^{-\beta d(x))}   ࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值