摘要
本文提出了一种用卷积神经网络(CNN)构建的图像去雾模型,称为一体化去雾网络(AOD网)。它是基于一个重构的大气散射模型设计的。AOD网络没有像大多数以前的模型那样分别估计传输矩阵和大气光,而是通过一个轻量级的CNN直接生成清晰的图像。这种新颖的端到端设计使得很容易将AOD网络嵌入到其他深度模型中,例如,更快的R-CNN,以提高模糊图像的高级任务性能。
本文贡献
(1)我们首先提出了一个端到端的可训练去雾模型,该模型直接从模糊图像产生干净的图像,而不依赖于任何单独的和中间的参数估计步骤1。.AOD网络是基于重新制定的大气散射模型设计的,物理模型可以用一种“更加端到端”的方式来表述,所有的参数都在一个统一的模型中进行估计。
(2)我们首次定量研究去雾质量如何影响后续的高级视觉任务,这为比较去雾结果提供了一个新的客观标准。此外,AOD网络可以与其他深度模型无缝嵌入,以构成一个管道,通过隐式去雾过程对模糊图像执行高级任务。由于我们独特的一体化设计,这种管道可以端到端地联合调整,以进一步提高性能。
AOD网:一体化去雾模式
物理模型和转换公式
大气散射模型
I(x)= J(x)t(x)+A(1-t(x)) (1)
I(x)是有雾图像,J(x)是待恢复无雾图像 A是全球大气光,t(x)是传输矩阵
t(x)=