- 博客(11)
- 收藏
- 关注
原创 Keys to Better Image Inpainting: Structure and Texture Go Hand in Hand(2022)
本文认为通过生成的结构和纹理可以更好地判断修复算法的性能。结构是指生成的物体边界或清晰的几何结构,纹理是指高频细节,尤其是填充在结构区域内部的人造重复图案。本文认为更好的结构通常是从从粗到细基于GAN的生成器网络,重复模式可以被更好塑造使用高频快速傅立叶卷积层。在本文提出了一种结合两种设计优点的新型修复网络。因此,本文的模型在使用单个网络的结构生成和重复纹理合成方面实现了显著的视觉质量,以匹配最先进的性能。本文的结论进一步强调了图像修复质量的两个关键因素,结构和纹理,作为未来修复网络的设计方向。
2023-04-18 17:44:14 412
原创 Fast Deep Multi-patch Hierarchical Network for Nonhomogeneous ImageDehazing(图像去雾cvpr2020)
无
2022-12-11 19:45:21 990
原创 GridDehazeNet: Attention-Based Multi-Scale Network for Image Dehazing(ICCV2019)
无
2022-10-04 11:16:47 1674
原创 You Only Look Yourself: Unsupervised and Untrained SingleImage Dehazing Neural Network(CVPR2020)
无
2022-09-11 22:22:06 132
原创 DehazeNet: An End-to-End System for Single ImageHaze Removal(图像去雾2016)
无
2022-07-06 22:16:03 3816
原创 FFA-Net: Feature Fusion Attention Network for Single Image Dehazing
摘要本文提出了一种端到端的特征融合注意网络(FFA-Net)来直接恢复无霾图像。FFA-Net架构包括三个关键组件:1)考虑到不同的通道特征包含完全不同的加权信息,并且雾度分布在不同的图像像素上是不均匀的,新颖的特征注意(FA)模块将通道注意与像素注意机制相结合。FA不平等地对待不同的特征和像素,这在处理不同类型的信息时提供了额外的灵活性,扩展了CNN的表示能力。2)基本块结构由局部残差学习和特征关注组成,局部残差学习允许通过多个局部残差连接绕过较不重要的信息,如薄雾霾区域或低频,让主网络架构专注于更有
2022-05-22 15:51:02 3868
原创 Recurrent Context Aggregation Network for SingleImage Dehazing(IEEE SIGNAL PROCESSING LETTERS)
摘要:现有的基于学习的去雾方法容易造成去雾过度和去雾失败,主要是因为没有充分利用雾天图像的全局特征,而雾天图像的局部特征没有足够的区度,本文提出了一种递归上下文聚合网络(RCAN)来有效地去除图像的模糊并恢复颜色保真度。在RCAN,一种被称为上下文侵犯块(CAB)的高效通用模块被设计为通过利用全局和局部特征来改进特征表示,全局和局部特征对于鲁棒去雾是互补的,因为局部特征可以捕捉不同级别的雾度,而全局特征可以关注整个图像的纹理和对象边缘。此外,RCAN采用深度递归机制来提高去雾性能,而不引入额外的网络参数。在
2022-05-11 10:03:44 370
原创 Generative Image Inpainting with Contextual Attention(CVPR2018)
Abstract(摘要):基于深度学习的方法可以生成视觉上似是而非的图像结构和纹理,但通常会产生与周围区域不一致的扭曲结构或模糊纹理。这主要是由于卷积神经网络在明确借用来自遥远空间位置的信息方面的无效性。另一方面,当需要从周围区域借用纹理时,传统的纹理和块合成方法特别适合。受这些观察的激励,本文提出了一种新的基于深度生成模型的方法,该方法不仅可以合成新的图像结构,而且可以在网络训练期间明确地利用周围的图像特征作为参考,以做出更好的预测。该模型是一个前馈、完全卷积的神经网络,可以在测试时间内处理在任意位置
2022-04-30 16:39:34 3526
原创 Single Image Haze RemovalUsing Dark Channel Prior
摘要本文提出了一种简单而有效的图像先验方法——暗通道先验,用于去除单幅输入图像中的雾霾。暗通道先验是室外无雾图像的一种统计。它基于一个关键的观察结果——户外无雾图像中的大多数局部块包含一些像素,这些像素在至少一个颜色通道中的强度非常低。将该先验与薄雾成像模型一起使用,我们可以直接估计薄雾的厚度并恢复高质量的无薄雾图像。在各种模糊图像上的结果证明了所提出的先验的能力。此外,还可以获得高质量的深度图作为除雾的副产品。一引言本文提出了一种新的先验——暗通道先验,用于单幅图像去雾。暗通道先验是基于室外无
2022-04-25 21:31:10 2265
原创 Domain Adaptation for Image Dehazing(cvpr2020)
摘要:近年来,使用基于学习的方法的图像去雾已经实现了最先进(SOAT)的性能。然而,大多数现有方法在合成的模糊图像上训练去雾模型,由于域偏移,该去雾模型不太能够很好地推广到真实的模糊图像。为了解决这个问题,我们提出了一个领域适应范例,它包括一个图像翻译模块和两个图像去雾模块。具体来说,我们首先应用双向翻译网络,通过将图像从一个域翻译到另一个域来弥合合成域和真实域之间的差距。然后,我们使用翻译前后的图像来训练一个有一致性约束的双图像去雾网络。在这个阶段,我们通过利用清晰图像的属性(例如,暗通道先验和图像梯度平
2022-04-18 22:16:34 3467
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人