在linux中搭建多tensorflow环境

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/change_things/article/details/80255678

最近要跑各种tensorflow的代码,苦于不同代码使用的tensorflow环境不同。后来发现在Linux下可以轻松使用Anaconda实现不同版本的tensorflow环境的同时存在,一下子方便了好多。

比如在A工程中需要tensorflow 1.0.1+ cuda7.5 + cudnn,在B工程中需要tensorflow1.7+cuda8+cudnn,可以用Anaconda的conda create命令创建两个环境,然后分别在其中装tensorflow 1.0.1和tensorflow 1.7,这样就可以在运行的时候随意切换了。命令如下:

conda create --name tensorflow1.0.1

或者 conda create -n tensorflow1.7

创建两个tensorflow环境后source activate tensorflow1.0.1启用tensorflow1.0.1的环境,在里面直接用conda install tensorflow-gpu装tensorflow1.0.1

接着更新Anaconda的源,推荐使用清华大学的开源软件镜像站,速度比在tensorflow官网下快多了:

https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/

然后激活tensorflow1.7 :

source activate tensorflow1.7

最后conda install tensorflow-gpu即可

不行的话可以尝试升级conda: conda update conda

conda安装tensorflow比网上的教程简单许多,甚至不需要自己找相应的cuda版本,版本安错了换来换去的挺浪费时间的。如果安装不上可以尝试pip命令,但需要在相应的anaconda环境下,不然都装在默认环境下。


阅读更多
换一批

没有更多推荐了,返回首页